
Classifier Robustness in Adversarial Settings

Francesco Bergadano

Department of Computer Science
University of Torino

Presentation plan

1) Basic concepts in anomaly detection
1) Cybersecurity applications of Machine Learning
2) Formalization and metrics
3) ROC & PR curve analysis

2) Adversarial evasion and defenses
1) Adversarial examples and evasion
2) Known evasion resistance measures
3) Defenses and randomization
4) Randomization as keyed learning

3) New research*
1) Adversarial failure curves
2) New randomization techniques
3) Evaluation on Intrusion Detection data sets

*joint work with Sandeep Gupta and Bruno Crispo (University of Trento)

Basic Concepts in Anomaly Detection

1) Cybersecurity Applications of
Machine Learning

2) Formalization and Metrics
3) ROC & PR curve analysis

Cybersecurity applications of ML

• User authentication
§ Authentication via physical biometrics
§ Authentication from user behaviors

§ Location / device info & type
§ Voice / sound
§ Keystroke / mouse / smarpthone dynamics

• Anomaly detection:
§ Host intrusion detection
§ Network intrusion detection
§ Malware detection
§ Spam filtering
§ Defacement response

Cybersecurity applications of ML

One step Multifactor Risk-based Continuous Anomaly
authentication authentication authentication authentication detection

The user authentication / anomaly detection continuum

N

P

P = positives (anomalies)
N = negatives (normal data)

NPD
P = positives (anomalies)
N = negatives (normal data)
PD = classified as positive by defender

fp = N ∩ PD = defender false positives
tp = P ∩ PD = defender true positives
fn = P-tp = defender false negatives
tn = N-fp = defender true negatives

fp
tp

fn

P

Standard Anomaly Detection Concepts

tn

NPD
Well-known metrics

confusion matrix
(contingency table)

accuracy = correct/total = (|tp|+|tn|)/(|P|+|N|)

tpr = recall = sensitivity = hit rate = |tp|/|P|

fpr = false alarm rate = |fp|/ |N|

precision = positive predictive value =
= correctness when PD=anomaly =
= |tp|/(|tp|+|fp|)

specificity = |tn| / (|fp|+|tn|) = 1 – fpr

F-measure = F1 score = 2/[(1/precision)+(1/recall)]

fp
tp

fn

P

tn

|tp| |fp|

|fn| |tn|

Defender success =
maximise true positive rate
minimise false positive rate

ROC space (Receiver Operating Characteristics)[1]

0 1 fpr

tpr

1

0

Perfect
classifier

Good (tpr=.8, fpr=.5)

Bad (tpr=.1, fpr=.2)

[1] Tom Fawcett, “An introduction to ROC analysis”, Pattern Recognition Letters 27, pp. 861-874, 2006

Random (tpr=.5, fpr=.5)

Threshold (or probabilistic) classifiers

They do not output just 0 or 1 (normal data vs anomaly),
buth rather an arbitrary real number, called a score.

We can transform a threshold classifier TC into a
discrete classifier C as follows:

C(e) = 1 (anomaly) if TC(e) ≥ threshold

NPD

clfD = defender’s classifier

Normally clfD is a threshold classifier,
i.e. clfD(e)=score and e ∈ PD if score ≥ threshold

fpr = |fp|
|N| (𝒇𝒂𝒍𝒔𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝒓𝒂𝒕𝒆)

tpr = |tp|
|P| = |P|−|fn|

|P| = 1-fnr (𝒕𝒓𝒖𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝒓𝒂𝒕𝒆)

fp

Defender success = minimize fpr
maximise tpr

tp

fn
P

NPD
clfD = defender’s classifier

Normally clfD is a threshold classifier,
i.e. clfD(e)=score and e ∈ PD if score ≥ threshold

When threshold decreases:
tp grows good
fp grows bad

fpr = |fp|
|N| (𝒇𝒂𝒍𝒔𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝒓𝒂𝒕𝒆)

tpr = |tp|
|P| = |P|−|fn|

|P| = 1-fnr (𝒕𝒓𝒖𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝒓𝒂𝒕𝒆)

fp

Defender success = minimize fpr
maximise tpr

tp

fn
P

Threshold classifiers: ROC curves [1]

0 4 1 fpr

tpr

1

7

0

threshold = -ꚙ

#n class score
1 1 .9
2 1 .8
3 0 .7
4 1 .6
5 1 .55
6 1 .54
7 0 .53
8 0 .52
9 1 .51

10 0 .505
11 1 .4
12 0 .39
13 1 .38
14 0 .37
15 0 .36
16 0 .35
17 1 .34
18 0 .33
19 1 .3
20 0 .1

threshold = ꚙ

Threshold=.4

if score ≥ threshold then class=1

Threshold classifiers: ROC curves [1]

0 1 fpr

tpr

1

0

threshold = -ꚙ

#n class score
1 1 .9
2 1 .8
3 0 .7
4 1 .6
5 1 .55
6 1 .54
7 0 .53
8 0 .52
9 1 .51

10 0 .505
11 1 .4
12 0 .39
13 1 .38
14 0 .37
15 0 .36
16 0 .35
17 1 .34
18 0 .33
19 1 .3
20 0 .1

threshold = ꚙ

threshold=.4

if score ≥ threshold then class=1

threshold=.35

Threshold classifiers: ROC curves [1]

0 1 fpr

tpr

1

0

.9

threshold = -ꚙ

#n class score
1 1 .9
2 1 .8
3 0 .7
4 1 .6
5 1 .55
6 1 .54
7 0 .53
8 0 .52
9 1 .51

10 0 .505
11 1 .4
12 0 .39
13 1 .38
14 0 .37
15 0 .36
16 0 .35
17 1 .34
18 0 .33
19 1 .3
20 0 .1

threshold = ꚙ

.8

.7
.6
.55

.54
.53

.52

.51 .4

.505
.39

.38 .37 .36

.35

.34

.3

.33

if score ≥ threshold then class=1

Threshold classifiers: ROC curves [1]

0 1 fpr

tpr

1

0

threshold = -ꚙthreshold = ꚙ

if score ≥ threshold then class=1

Remark:

ROC curves
are monotonic
(but not always
convex)

because, when
thresholds decrease,
tpr increases

Threshold classifiers: ROC curves

0 1 fpr

tpr

1

0

threshold = ꚙ threshold = -ꚙ

Remark:

ROC curves
are monotonic
(but not always
convex)

because, when
thresholds decrease,
tpr increases

Comparing classifiers with ROC curves

0 1 fpr

tpr

1

0

Better hereBetter here
ROC curves can be
analyzed to
compare classifiers,
depending on the
accepted fpr range

Area Under ROC curve (AUROC)
a single number for comparing different classifiers

0 1 fpr

tpr

1

0

WorseBetter

Computing ROC-AUC (trapezoid metdhod)[1]

with O(|test set|*log(|test set|)) complexity

0 1 fpr

tpr

1

0

threshold = -ꚙ

threshold = ꚙ

FP=TP=0; FPprev=TPprev=0;
A=0; scoreprev =-ꚙ; i=1
for i=1 to |test set| // test set sorted by score

if score(i)≠ scoreprev then
A+=trapezoid(FP,FPprev,TP,TPprev)
scoreprev=score(i)
FPprev=FP; TPprev=TP

if class(i)=1 then TP=TP+1
if class(i)=0 then FP=FP+1

A+=trapezoid(N,FPprev,P,TPprev)
Return A/(P*N)

[1] Tom Fawcett, “An introduction to ROC analysis”, Pattern Recognition Letters 27, 2006

(FP-FPprev)*(TP+TPprev)/2

Computing ROC-AUC

0 1 fpr

tpr

1

0

threshold = -ꚙ

threshold = ꚙ

FP=TP=0; FPprev=TPprev=0;
A=0; scoreprev =-ꚙ; i=1
for i=1 to |test set| // test set sorted by score

if score(i)≠ scoreprev then
A+=trapezoid(FP,FPprev,TP,TPprev)
scoreprev=score(i)
FPprev=FP; TPprev=TP

if class(i)=1 then TP=TP+1
if class(i)=0 then FP=FP+1

A+=trapezoid(N,FPprev,P,TPprev)
Return A/(P*N)

FPprev FP

TP

TPprev

instances with
equal score

(FP-FPprev)*(TP+TPprev)/2

Handling instances with equal score

FPprev FP

TP

TPprev

FPprev FP

TP

TPprev

FPprev FP

TP

TPprev

optimistic average pessimistic
(class 1 first) (mixed) (class 0 first)

optimistic
#n class score
i 1 .7
i+2 1 .7
i+3 1 .7
i+4 0 .7
i+5 0 .7

pessimistic
#n class score
i+4 0 .7
i+5 0 .7
i 1 .7
i+2 1 .7
i+3 1 .7

ROC curves
obtained with

scikit-learn
and the digits

dataset^

^ using digit 3 as anomaly, and all other digits as normal data

Exercises

1) Learn classifiers using scikit-learn
• Download the digits data set using Scikit-lean, and re-

label digit 3 as anomaly and all other digits as normal
• Split the data set into a training set and a test set
• Learn different models (e.g. random forest, mlp, knn)

2) Use the metrics module to evaluate ROC-AUC
on the test set, for the learned models (see
1_ROCexamples.py)

3) Implement your own ROC-AUC computation,
using the trapezoid method

Exercises, part 1)
clfA=KNeighborsClassifier(10)

clfD=RandomForestClassifier(max_depth=10,

n_estimators=10)

clfR=MLPClassifier(alpha=1, max_iter=1000)

#%% dataset preparation & modification

digits = datasets.load_digits()

n_samples = len(digits.images)

data = digits.images.reshape((n_samples, -1))

anomaly=3 #3 = anomaly, others = normal

for i in np.arange(digits.target.size):

if digits.target[i]==anomaly:

digits.target[i]=1

else: digits.target[i]=0

#prepare training&test, fit&predict

X_train, X_test, y_train, y_test =

train_test_split(data, digits.target,

test_size=0.8, shuffle=False)

clfD.fit(X_train, y_train)

clfA.fit(X_train, y_train)

clfR.fit(X_train, y_train)

predD = clfD.predict_proba(X_test)[:, 1]

predA = clfA.predict_proba(X_test)[:, 1]

predR = clfR.predict_proba(X_test)[:, 1]

NPD

accuracy = correct/total = (|tp|+|tn|)/(|P|+|N|)

tpr = recall = sensitivity = hit rate = |tp|/|P|

fpr = false alarm rate = |fp|/ |N|

precision = positive predictive value =
= correctness when PD=anomaly =
= |tp|/(|tp|+|fp|)

F-measure = F1 score = 2/[(1/precision)+(1/recall)]

fp
tp

fn

P

tn

Accuracy, fpr and ROC curves may not work well
when classes are highly unbalanced (|N| >> |P|),
because fpr is marginally influenced by even large changes in |fp|

In this case we prefer to evaluate a precision vs recall trade-off, using PR curves

Precision Recall curves

0 1 recall (=tpr)

precision

threshold = ꚙ threshold = -ꚙ

Remark:

when the threshold
decreases, recall increases
because more anomalies
are recognized, but
precision tends to decrease
as more normal cases may
be classified as anomalies

Precision Recall curves: examples
Remark

when the threshold
decreases, recall increases
because more anomalies
are recognized, but
precision tends to decrease
as more normal cases may
be classified as anomalies

threshold = ꚙ threshold = -ꚙ

Comparing classifiers with PR curves
Remark:

AUC can be computed
with the trapezoid
method as for ROC curves

threshold = ꚙ threshold = -ꚙ

Summary

1) Cybersecurity Applications of
Machine Learning

2) Formalization and Metrics
3) ROC curve analysis

Adversarial evasion and defenses

Previous work on:
Adversarial Examples
Evasion resistance metrics
Randomization and keyed learning

Adversarial actions
in anomaly
detection contexts

• Data poisoning
• Evasion

• Selection from an anomaly in the test set
• Modificatoin of an anomaly in the test set

Training set

Evasion = adversarial attack at test time:

Training set is not modified
Test set is modified, as the adversary can:

select a subset of the test set
modifiy some instances in the test set

Test set Adversarial
test set

Adversarial objectives

Find or create test instances <x,y> that
are effective attacks but go undetected:
y=1 (anomaly), but CD(x)=0 (not detected)

Where CD is the classifier learned by
the defender using the training set.

Test set Adversarial
test set

Most frequently investigated
in the literature (from the
adversary’s perspective)

Adversarial examples
Test set Adversarial

test set Most frequently investigated in the
literature (from the adversary’s
perspective):
modify a test instance that is
correctly classified as anomalous,
into an apparently similar one that
avoids detection

Adversarial examples
Test set Adversarial

test set modify a test instance that is
correctly classified as anomalous,
into an apparently similar one that
avoids detection

[2] I. J. Goodfellow, J. Shlens & C.
Szegedy. Explaining and harnessing
adversarial examples, Proc. ICLR 2015.

Adversarial examples in discrete domains [3]

[3] Fan Yang, Zhiyuan Chen, and Aryya Gangopadhyay
Using Randomness to Improve Robustness of Tree-Based Models Against
Evasion Attacks IEEE Transactions on Knowledge and Data Engineering, 2022

Cost of adversarial examples
We could assign a weigth to each feature, e.g.

w(Remove)=0.2, w($)=0.1, w(!)=0.1,
w(Total Capital)=0.4, w(000)=0.2

When feature Fi of e (ei) is changed to x, the
cost is w(Fi)*|x- ei|/(max(Fi)-min(Fi))

Suppose max(Total Capital = 200),
max($)=max(!)=max(000)=max(Remove)=1

then

Cost(b)=(.2-.05)*w($)=.015 (tricks only 1 tree)
Cost(c)=(.2-.05)*w($)+

w(Total Capital)*(100-64)/200=.087 (high cost)
Cost(d)=(.2-.05)*w($)+(.4-.378)*w(!)+

(.3-.25)*w(000)=.15*.1+.022*.1+.05*.2=.0272 best

Input: an anomalous example e and a classification forest F,
where each node holds exclusive binary conditions

Output: an adversarial anomaly a(e), misclassified by F,
and the cost of transforming e into a(e)

x = instance with the lowest positive score, computed as
the number of trees in F classifying x as an anomaly

cost=0;
while more than 50% of trees in F classify e as an nomaly:

select feature i so that changing ei to xi has minimum cost
Ci and maximum benefit (number of trees in F that
no longer classify e as an anomaly)

ei = xi; cost+=Ci

return e,cost

Adversarial example generation (instance based greedy search)

[4] A. Kantchelian, J. D. Tygar, A. Joseph. Evasion and
Hardening of Tree Ensemble Classifiers, ICML 2016

Input: an anomalous example e and a classification forest F,
where each node holds exclusive binary conditions

Output: an adversarial anomaly a(e), misclassified by F,
and the cost of transforming e into a(e)

{T1, …, Tn} = random permutation of trees in F
e1=e; cost=0; cond=true;
for j=1 to ⌈n/2⌉ :

for each path Pi in Tj from root to a ‘non-anomaly’ leaf:
condi=the conditions in the path Pi
Ci = cost for tranforming ej into ai,j so that cond&condi = true

i_min = argmini(Ci); cond = cond and condi_min; cost += Ci_min

ej+1 = ai_min,j

return e⌈n/2⌉+1, cost

Adversarial example generation (model based greedy search)

Exercise: simulate the 2 algorithms on the above forest
and spam email, generating an adversarial spam email

Evasion resistance metrics
Test set Adversarial

test set Learn evasion resistant classifiers,
that make it diffult for the
adversary to evade detection

Research question:
How do we measure

evasion resistance?

Evasion resistance metrics (A)
Test set Adversarial

test set
[4] Dalvi, N., Domingos, P., Mausam, Sanghai, S.,
Verma, D.: Adversarial classification. In Proc. ACM
Int. Conf. Knowledge Discovery Data Mining, 2004

[5] Biggio, B., Fumera, G., Roli, F. (2008). Adversarial
Pattern Classification Using Multiple Classifiers and
Randomisation. Springer LNCS 5342, 2008

[6] Biggio, B., Corona, I., Maiorca, D., Nelson, B.,
Srndic, N., laskov, P., Giacinto, G., Roli, F.,
Evasion Attacks against Machine Learning at Test
Time, arxiv.org/abs/1708.06131v1, 2017

Adversarial Utility UA(x,a(x)) = gain – cost
where gain = advantage gained by transforming anomaly x into a(x), maximum if CD(x)=1 and CD(a(x))=0
and cost = cost of the transformation of x into y (e.g., computational, or loss of anomaly’s effectiveness)

Defender’s goals: (1) robustness (minimize adversarial utility) and (2) accuracy

x

a(x)

Evasion resistance metrics (B)
Test set Adversarial

test set

[3] Fan Yang, Zhiyuan Chen, and Aryya Gangopadhyay Using
Randomness to Improve Robustness of Tree-Based Models
Against Evasion Attacks, IEEE TKDE, 2022

[7] M. Andriushchenko, F. Croce, N. Flammarion, and M. Hein.
Square attack: a query-efficient black-box adversarial attack via
random search. Euro Conf. on Computer Vision, 2020.

[8] J. Chen and Q. Gu. Rays: A ray searching method for hard-
label adversarial attack. In ACM SIGKDD Int. Conf.
Knowledge Discovery and Data Mining, 2020.

Measure the cost needed for evasion in terms on an Lp distance d:
where cj is the cost of the j-th feature and
xj is the value of the j-th feature for test instance x

Defender’s goals: (1) robustness (maximize adversary’s cost) and (2) accuracy

x

a(x)

Evasion resistance metrics (C)
Test set Adversarial

test set
[3] Fan Yang, Zhiyuan Chen, and Aryya Gangopadhyay Using
Randomness to Improve Robustness of Tree-Based Models
Against Evasion Attacks, IEEE TKDE, 2022

[9] Jing Wu, Mingyi Zhou, Ce Zhu, Yipeng Liu, Mehrtash
Harandi, and Li Li. Performance evaluation of adversarial
attacks: Discrepancies and solutions. ArXiv 2104.11103, 2021.

Measure adversarial evasion success rate when a maximum cost budget B is allowed

Defender’s goals: (1) robustness (minimize adversarial success rate) and (2) accuracy

x

a(x)

Evasion resistance methods
• During learning

§ Random training subset
§ Random feature selection
§ Ensemble learning

• Post-learning
§ Add random noise
§ Select a random sub-ensemble

1) Randomization: make
the learned classifier
unpredictable for the
adversary

2) Retrain after adding
adversarial examples [10]

3) Defensive distillation [11]

[10] H. Lee et al., “Generative adversarial trainer: defense to adversarial perturbations
with GAN”, ArXiv 1705.03387, 2017
[11] N. Papernot et al., “Distillation as a Defense to Adversarial Perturbations against
Deep Neural Networks”, IEEE Symposium on Security & Privacy, IEEE 2016

Learning time randomization

• Random training subset [5]
• Random features / parameters

• Secret feature set [12]
• Initial weights of a neural network [5]

• Multiple classifiers & Ensemble Learning
• Random weight sets for SPAM assassin

filters, generated via SVMs [5]
• Weighted random forests [3]

[12] M. Barreno et al., “Can Machine Learning be Secure?”, ASIA CCS 2006

Post-learning (test time) randomization

• Add bounded random noise [12]
• Binary classifiers (randomly flip classification)
• Threshold classifiers (add random value to score)

• Select a random sub-ensemble
• Randomly select some trees in the learned

random forest [3]

Keyed Intrusion Detection
[1] J. E. Tapiador et al., Key-recovery attacks on KIDS, a keyed anomaly
detection system, IEEE Trans. Dependable Secure Comput., 2015
[2] R. Bendale et al., KIDS: Keyed Anomaly Detection System, Int. J.
Adv. Eng. Res. Dev., 2017

Keyed Learning
[3] F. Bergadano. “Keyed learning: An adversarial learning framework”,
ETRI Journal 41 (5), 608-618, 2019

Randomization using “keys”

Keyed learning

- Keyed Learning = Machine Learning with a (secret) key

- Why: because we do not want the adversary to replicate learning and
predict our decisions

- How: use the key to generate secrets, and use them every time some
decision is needed during the learning process

Using a key while learning

Learned
hypothesis

hÎH
Learning Key

Data Selection
Key Filter

Keyed
Learning

Examples

biasFeatures &
hypothesis

space H

Models &
hyperparameters

1) Selection of the training examples
2) Selection of models & parameters
3) Selection of features & H

Keyed learning in anomaly detection and
Kerchoff’s principle

Learned
classifier

Key

Learning
algorithm

Keyed box

data

Learned
classifier

Learning
algorithm

Black box

data

Learned
classifier

Learning
algorithm

White box

data

security through
obscurity (sto) secret limited to key vulnerable to

learning replay

Summary

- types of adversarial attacks, and evasion & adversarial examples
- evasion resistance metrics
- evasion resistance methods, esp. randomization
- general notion of keyed learning
- «keyed box» threat model

New research on evasion resistance

1) Metrics:
• adversarial failure rate (afr)
• adversarial failure curves
• AFR-AUC (area under the curve)

2) Randomization
• Trainset size pinning
• Model matrix

3) IDS application

F. Bergadano, S. Gupta, B. Crispo

Shortcomings of known evasion
resistance measures

Test set Adversarial
test set

(1) We do not know, in practice, how an
adversary will behave, and producing an
adversarial test set often requires arbitrary
and artificial assumptions:
real-world adversarial test sets do not exist

(2) Previous studies do not consider the fact
that, in most anomaly detection applications,
CD is a threshold function. Hence some form of
ROC-curve analysis would be appropriate

x

a(x)

Adversarial test set generation:
a different perspective

Original test set
(possibly
modified)
test set

adversarial &
out of sampleadversary

create

select

Evaluate, on the possibly
modified test set:

(1) ROC-AUC
and
(2) afr-AUC*

*adversarial failure rate

x

NPD

P = positives (anomalies)
N = negatives (normal data)
PD = classified as positive by defender

fp = N ∩ PD = defender false positives
tp = P ∩ PD = defender true positives
fn = P-tp = defender false negatives

fpr = |fp|
|N| (𝒇𝒂𝒍𝒔𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝒓𝒂𝒕𝒆)

tpr = |tp|
|P| = (𝒕𝒓𝒖𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝒓𝒂𝒕𝒆)

fp

Defender success = minimize fpr
maximise tpr

tp

fn

P

Standard
Anomaly
Detection
Concepts

NPD

P utp

ufn

ktpkfn

PA

fp

P = positives (anomalies)
N = negatives (normal data)
PD = classified as positive by defender
PA = classified as positive by adversary

fp = N ∩ PD = defender false positives
tp = P ∩ PD = defender true positives
fn = P-tp = defender false negatives

kfn = known false negatives
ufn = unknown false negatives
ktp = known true positives
utp = unknown true positives

Extension
to
Adversarial
Context

NPD

P = positives (anomalies)
N = negatives (normal data)
PD = classified as positive by defender
PA = classified as positive by adversary

fp = N ∩ PD = defender false positives
tp = P ∩ PD = defender true positives
fn = P-tp = defender false negatives

kfn = known false negatives
ufn = unknown false negatives
ktp = known true positives
utp = unknown true positives

P utp

ufn

ktpkfn

PA

Evasive adversarial hypothesis: PD and PA are similar
Evasive adversarial strategy: select an anomaly in kfn U utp
Adversarial success: the selected anomaly belongs to kfn

kfn = known to be fn by adversary = critical area (defender wants to minimize this)

fp

NPD

Performance measures
for an evasive adversary,
who selects e in kfn U utp

P utp

ufn

ktpkfn

PA

1) Minimize fpr = |fp|/|N|
2) Maximize the «adversarial failure rate» (afr), where

afr =

fp

there is no e such that e∈P and e∉PA

example e chosen by the adversary is in utp

New notion: afr space

0 1 fpr

afr

1

0

Best case (no false alarms,
adversary always fails)

Good (afr=.8, fpr=.5)

Less good (afr=.1, fpr=.2) So now we can plot
afr curves when

varying thresholds,
as done for
ROC curves

Bad (many false alarms,
adversary always wins)

- D’s ROC curve
- A’s ROC curve
- adversarial
failure curve

afr_AUC is a meaningful measure to compare models and learning strategies

Summary

• Evasive adversary threat model:
§ tries to replicate the defender’s learning step
§ wants to evade detection by selecting test examples that are false negatives

• Definition of adversarial failure rate (afr)
§ adversarial failure = attack detected or evasion impossible

• Adversarial failure curves (based on afr)
§ afr_AUC as a good measure of evasion resistance

New Randomization Techniques

New randomization techniques,
targeting evasion resistance as
measured by AFR-AUC:
1) Training set size pinning
2) Model Matrix

How can we randomize the learning process?

Learned
hypothesis

hÎH
Learning Key

Data Selection
Key Filter

Keyed
Learning

Examples

biasFeatures &
hypothesis

space H

Models &
hyperparameters

1) Selection of the training examples
2) Selection of models & parameters
3) Selection of features & H

2&3) Model
matrix

1) Trainset
size pinning

1) Randomize by selecting training examples:
training set size pinning

Assumption: the adversary knows all
training data T

Idea:
1) Use a secret and random

training subset Ti ⊆ T
2) Pin the optimal size x of Ti by induction,

i.e. the size of Ti that will maximise
AFR-AUC on a validation set

xFull training set

2) Randomize with model matrix
afrAUC for different combinations
of clfA and clfD (trainSize=1.0)*

Defender randomly picks a row
Adversary randomly picks a comumn
(each combination has equal probability)

combined afr = average afr* = 0.8

*data obtained with the
scikit-learn digits dataset

knn

random
forest

adaboost

knn random
forest adaboost

clfD

0.46 0.91 0.99

0.72 0.80 0.92

0.89 0.92 0.62

clfA

Application to IDS
(with the Beth dataset)

Comparing well-known randomization methods to
our combined techniques (training set size pinning

and model matrix) w.r.t. AFR-AUC

The Beth[1] data set

- Context and data sources
- more than 8 million total labeled data points, tracking 23 honeypots for 9 hours
- working subset of 1,141,078 data points as suggested in [1]

- Features and classes
- 14 numeric and discrete features, plus 2 binary class labels (‘sus’, ‘evil’)

- Preprocessing
- we implemented a preprocessing phase as suggested in appendix A of [1]
- after checking with the authors, we removed one additional feature (userId),

that would have otherwise made the problem too easy

[1] Kate Highnam, Kai Arulkumaran, Zachary Hanif, and Nicholas R. Jennings. “Beth Dataset: real cybersecurity data for
anomaly detection research”, Conf. Applied ML for Inf. Security (CAMLIS 2021).

Comparing afr for the digits and Beth datasets (afr)

Post learning
randomization

Keyed learning via
model randomization

+ trainset pinning

DIGITS BETH

Ensemble
Learning

Conclusions

• New performance measure for evasion avoidance:
• afr (adversarial failure rate) curves and AFR-AUC

• New randomization schemes:
• Training set randomization via trainset size pinning
• Model matrix

• Experimental comparison using two different data sets (digits,
Beth) + work in progress with Kyoto IDS:
• Combination of model matrix & training set size pinning

• Post-learning randomization
• Randomization intrinsic in ensemble learning Consistently

superior

References
[1] Kate Highnam, Kai Arulkumaran, Zachary Hanif, and Nicholas R. Jennings. “Beth Dataset: real
cybersecurity data for anomaly detection research”, Conf. Applied ML for Inf. Security (CAMLIS 2021).

[2] F. Bergadano. “Keyed learning: An adversarial learning framework”, ETRI Journal 41 (5), 608-618, 2019

[3] T. Fawcett. “An introduction to ROC analysis”, Pattern Recognition Letters 27, pp. 861-874, 2006

[4] S. Rota Bulò et al., “Randomized prediction games for adversarial machine, learning”, IEEE Trans.
Neural Netw. Learn. Syst. 28 (2017), no. 11, 2466–2478

[5] O. Taran, S. Rezaeifar, T. Holotyak, S. Voloshynovskiy. “Machine learning through cryptographic glasses:
combating adversarial attacks by key-based diversified aggregation”, EURASIP J. Inf. Secur. 2020

[6] B. Biggio, F. Roli, “Wild patterns: Ten years after the rise of adversarial machine learning”, in Proc. ACM
SIGSAC Conference on Computer and Communications Security, CCS ’18, New York, NY, USA, 2018

[7] F. Yang et al., “Using Randomness to Improve Robustness of Tree-based Models against Evasion
Attacks”, IEEE Trans. KDE, 34(2), pages 969-982, 2022

[8] R. S. Mrdovic and B. Drazenovic, “ KIDS: a Keyed Intrusion Detection System”, Proc. DIMVA 2010.

