Classifier Robustness in Adversarial Settings

Francesco Bergadano

Department of Computer Science University of Torino

Presentation plan

1) Basic concepts in anomaly detection

- 1) Cybersecurity applications of Machine Learning
- 2) Formalization and metrics
- 3) ROC & PR curve analysis

2) Adversarial evasion and defenses

- 1) Adversarial examples and evasion
- 2) Known evasion resistance measures
- 3) Defenses and randomization
- 4) Randomization as keyed learning
- 3) New research*
 - 1) Adversarial failure curves
 - 2) New randomization techniques
 - 3) Evaluation on Intrusion Detection data sets

*joint work with Sandeep Gupta and Bruno Crispo (University of Trento)

Basic Concepts in Anomaly Detection

- 1) Cybersecurity Applications of Machine Learning
- 2) Formalization and Metrics
- 3) ROC & PR curve analysis

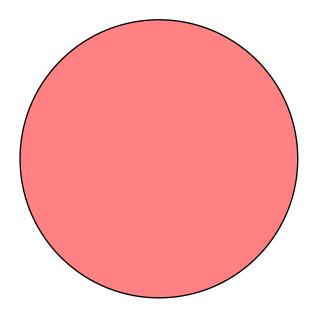
Cybersecurity applications of ML

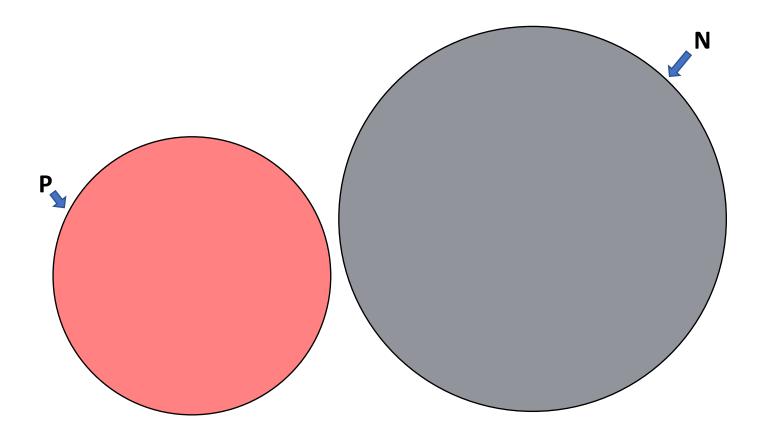
- User authentication
 - Authentication via physical biometrics
 - Authentication from user behaviors
 - Location / device info & type
 - Voice / sound
 - Keystroke / mouse / smarpthone dynamics
- Anomaly detection:
 - Host intrusion detection
 - Network intrusion detection
 - Malware detection
 - Spam filtering
 - Defacement response

Cybersecurity applications of ML

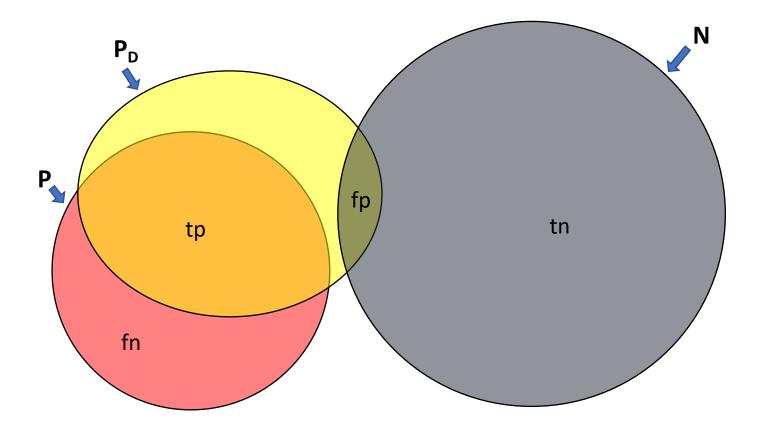
The user authentication / anomaly detection continuum

One step	Multifactor	Risk-based	Continuous	Anomaly
authentication	authentication	authentication	authentication	detection





P = positives (anomalies) N = negatives (normal data)



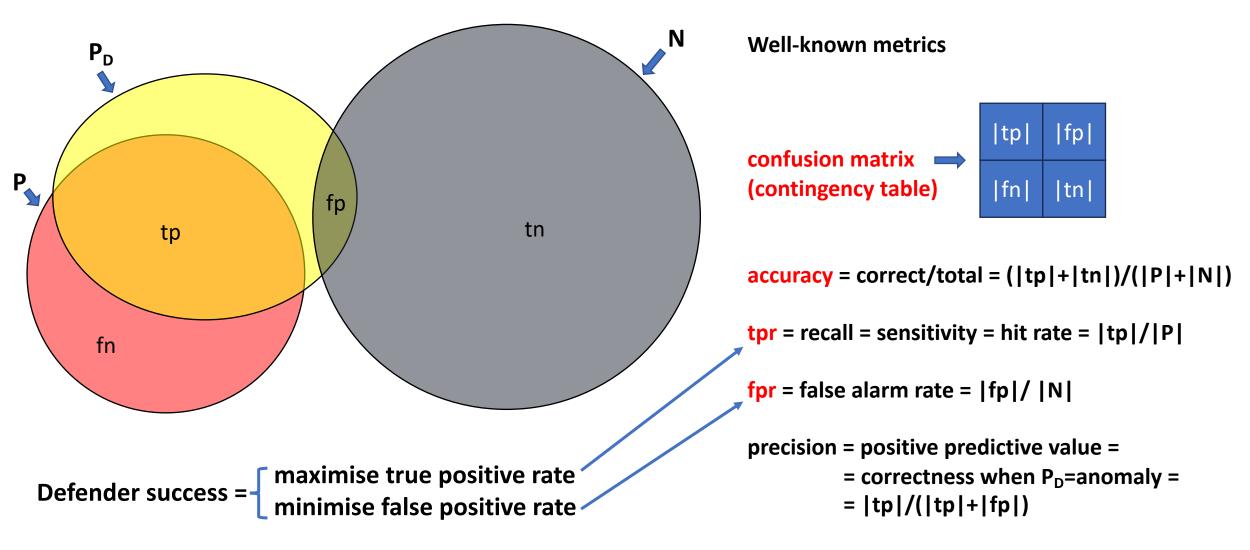
P = positives (anomalies)

N = negatives (normal data)

P_D = classified as positive by defender

 $\begin{array}{l} fp = N \ \cap \ P_D = defender \ false \ positives \\ tp = P \ \cap \ P_D = defender \ true \ positives \\ fn = P-tp = defender \ false \ negatives \\ tn = N-fp = defender \ true \ negatives \end{array}$

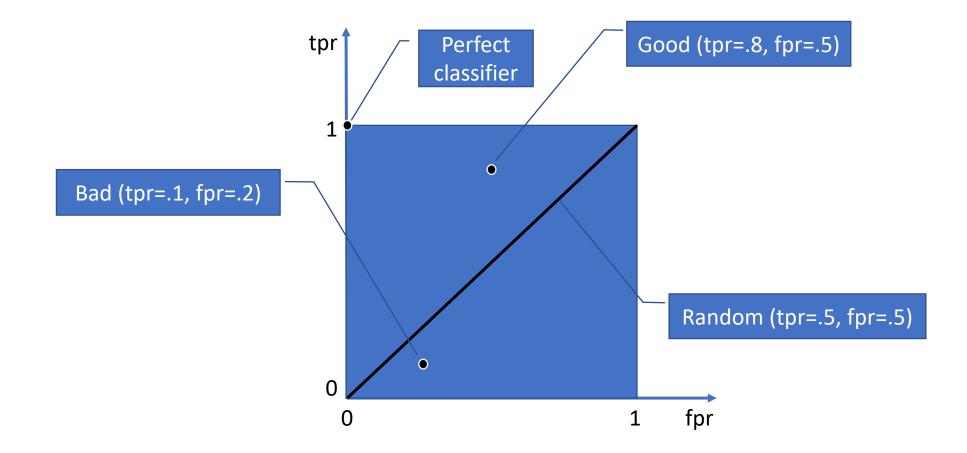
Standard Anomaly Detection Concepts



specificity = |tn| / (|fp|+|tn|) = 1 - fpr

F-measure = F_1 score = 2/[(1/precision)+(1/recall)]

ROC space (Receiver Operating Characteristics)^[1]



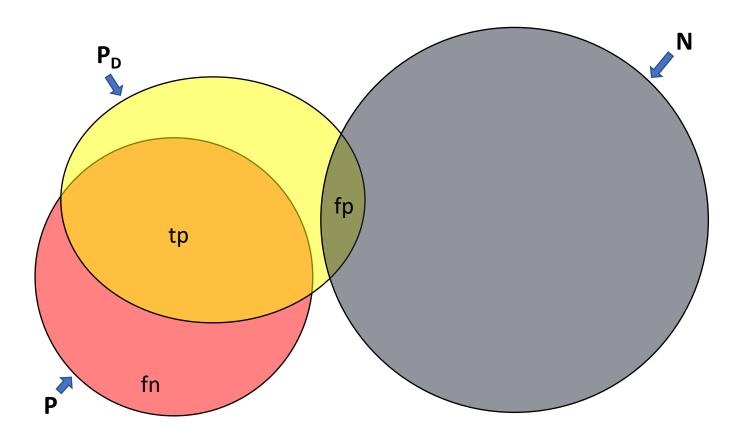
[1] Tom Fawcett, "An introduction to ROC analysis", Pattern Recognition Letters 27, pp. 861-874, 2006

Threshold (or probabilistic) classifiers

They do not output just 0 or 1 (normal data vs anomaly), buth rather an arbitrary real number, called a *score*.

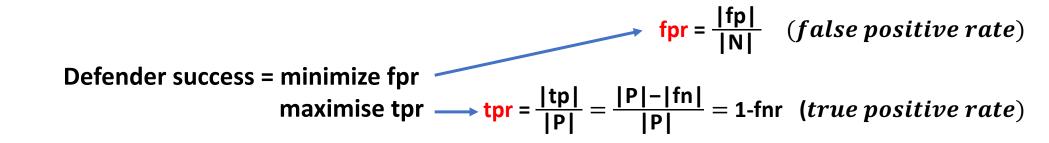
We can transform a threshold classifier TC into a discrete classifier C as follows:

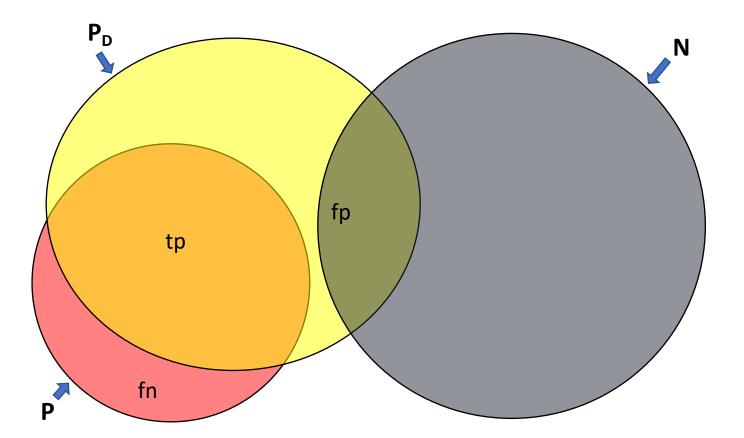
C(e) = 1 (anomaly) if $TC(e) \ge$ threshold



clf_D = defender's classifier

Normally clf_D is a threshold classifier, i.e. $clf_D(e)$ =score and $e \in P_D$ if score \geq threshold



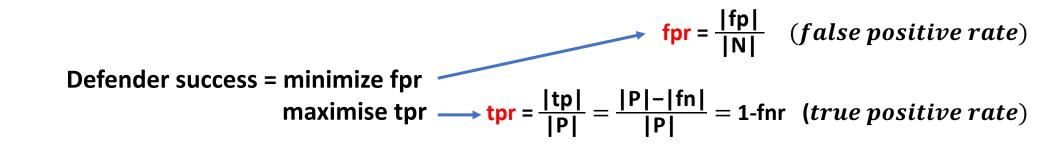


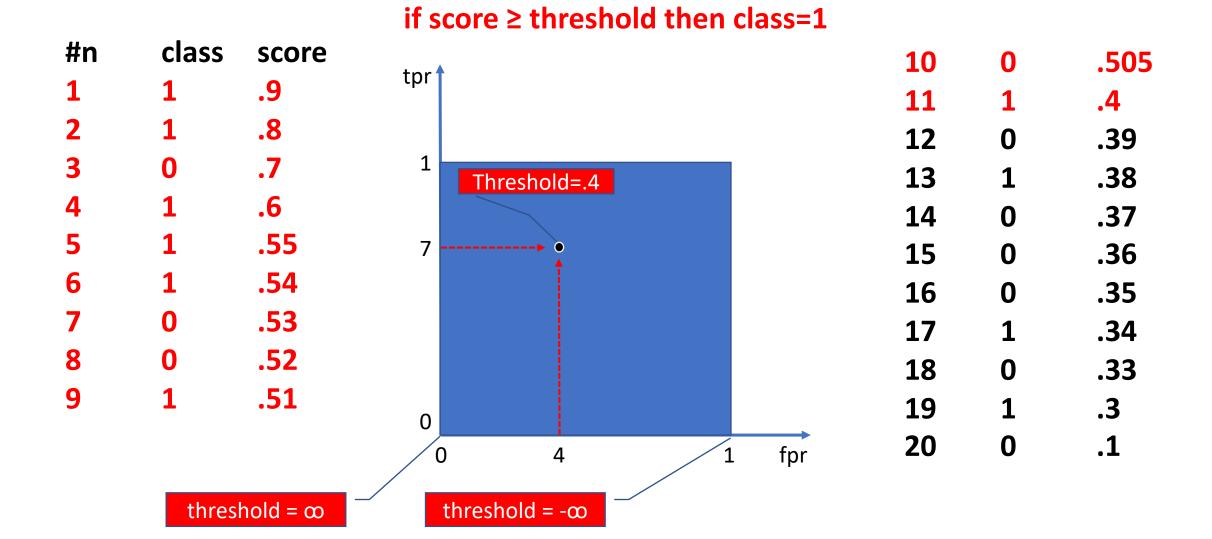
clf_D = defender's classifier

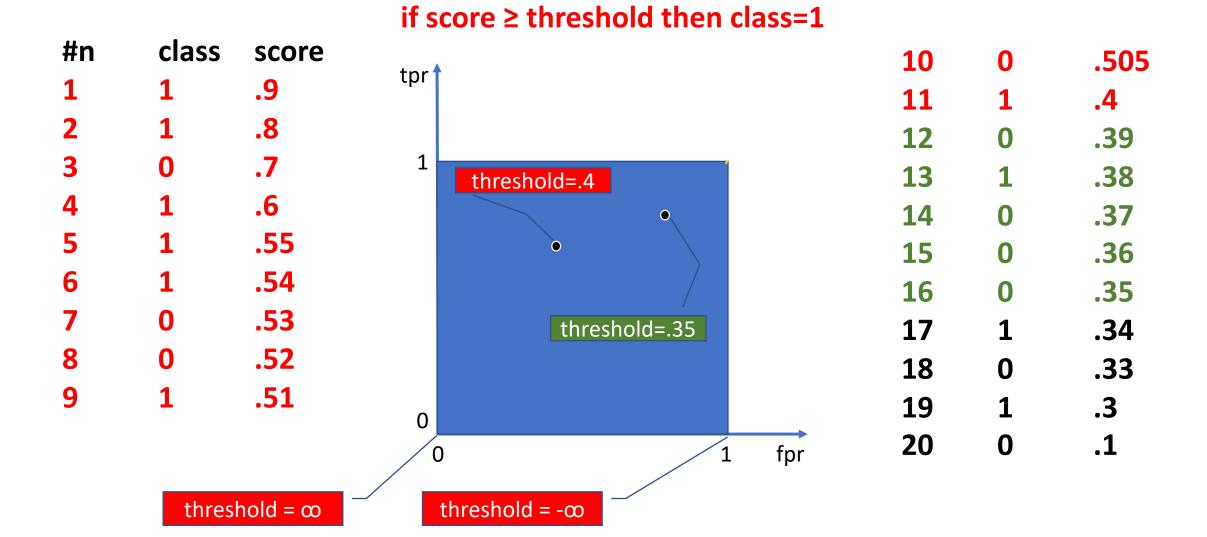
Normally clf_D is a threshold classifier, i.e. $clf_D(e)$ =score and $e \in P_D$ if score \geq threshold

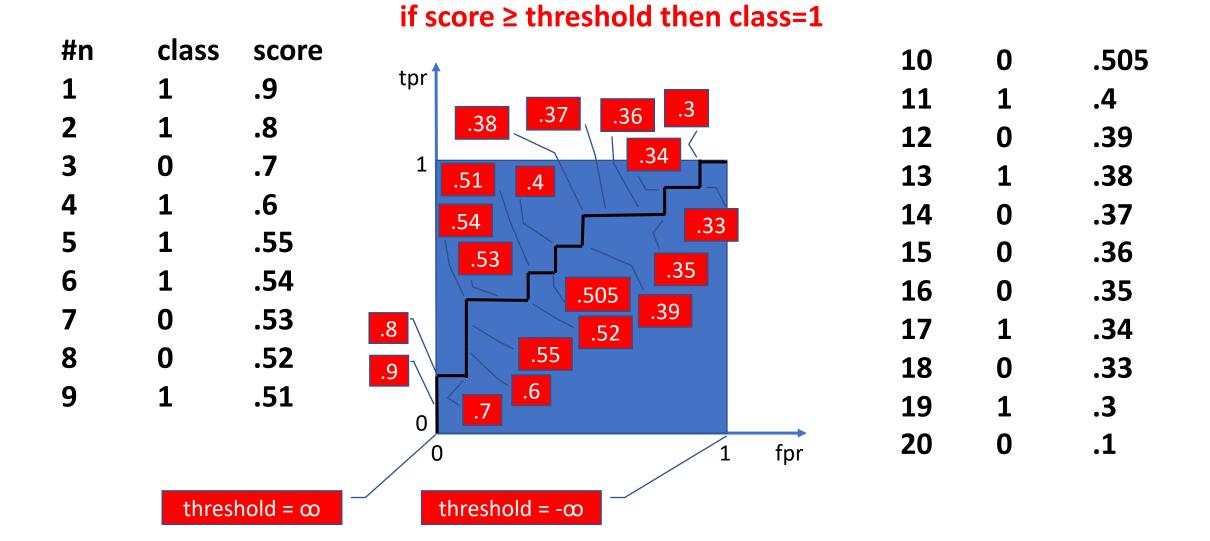
When threshold decreases:

tp grows	good
fp grows 🔶	bad

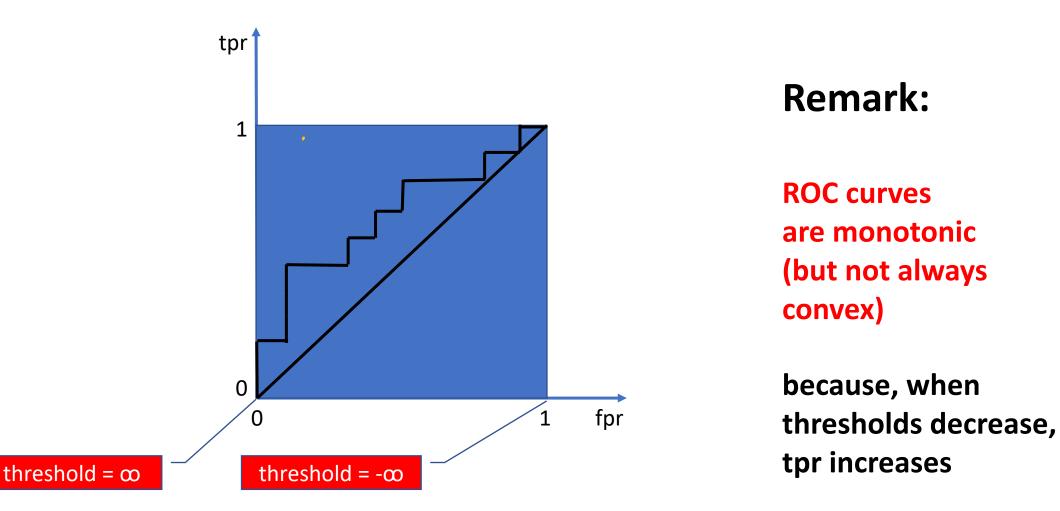


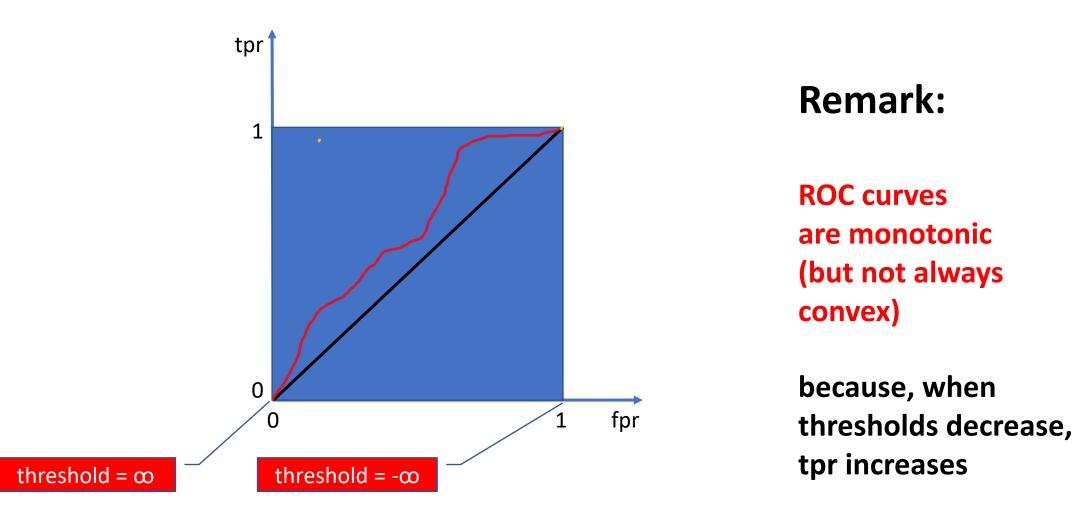




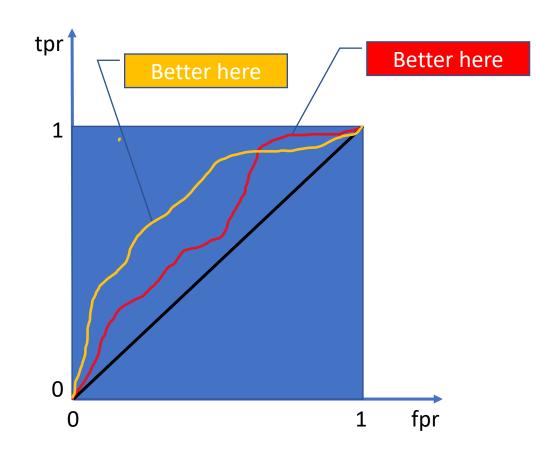


if score ≥ threshold then class=1



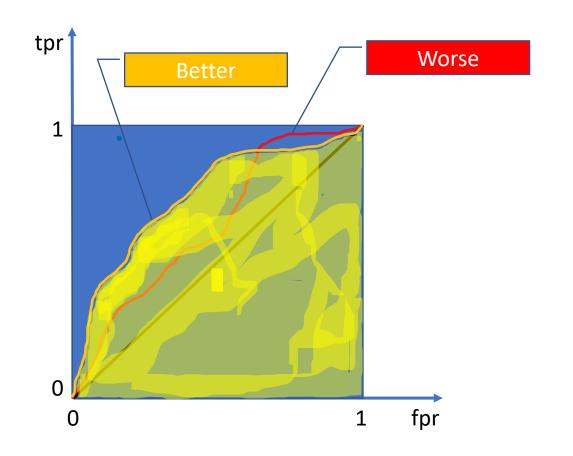


Comparing classifiers with ROC curves

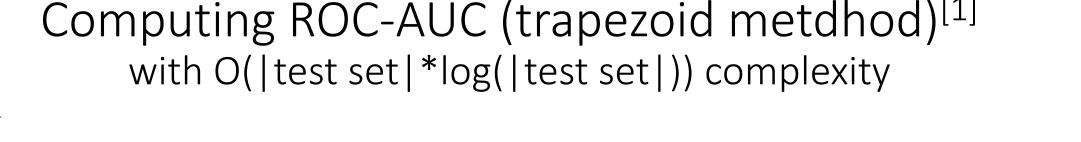


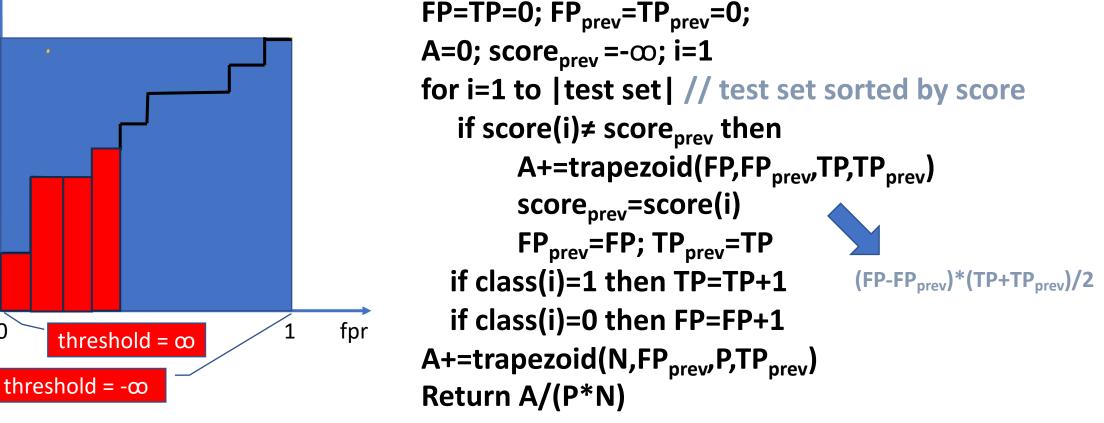
ROC curves can be analyzed to compare classifiers, depending on the accepted fpr range

Area Under ROC curve (AUROC) a single number for comparing different classifiers



if score(i)≠ score_{prev} then





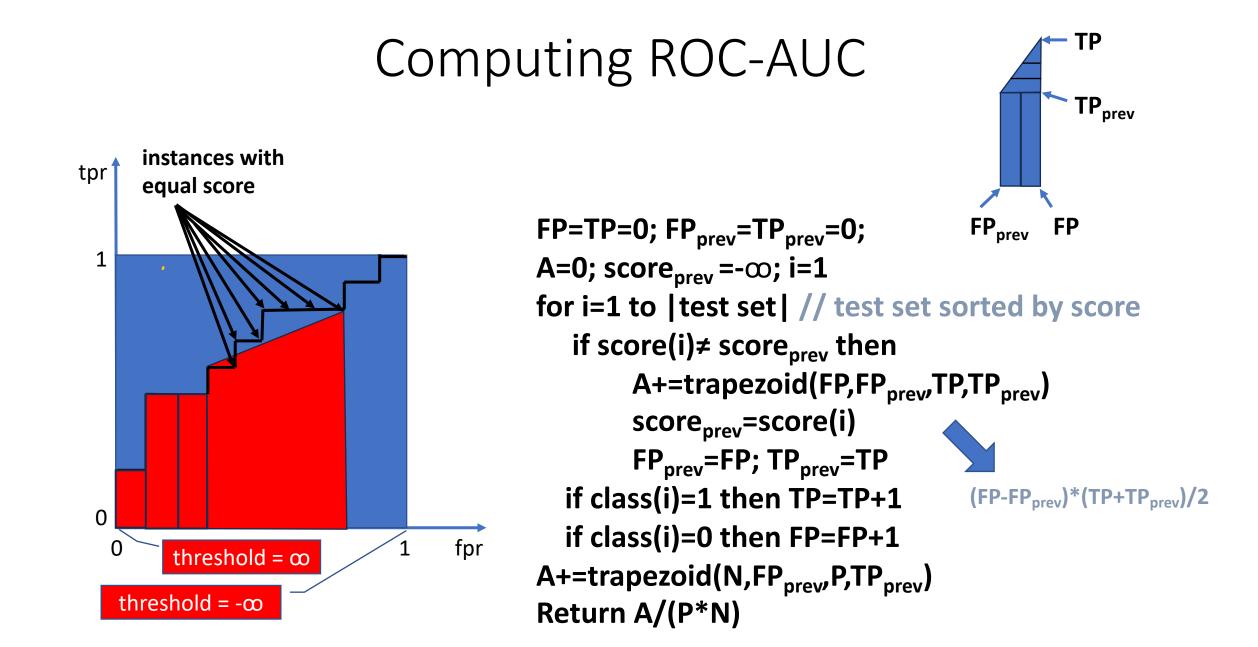
[1] Tom Fawcett, "An introduction to ROC analysis", Pattern Recognition Letters 27, 2006

tpr

1

0

0

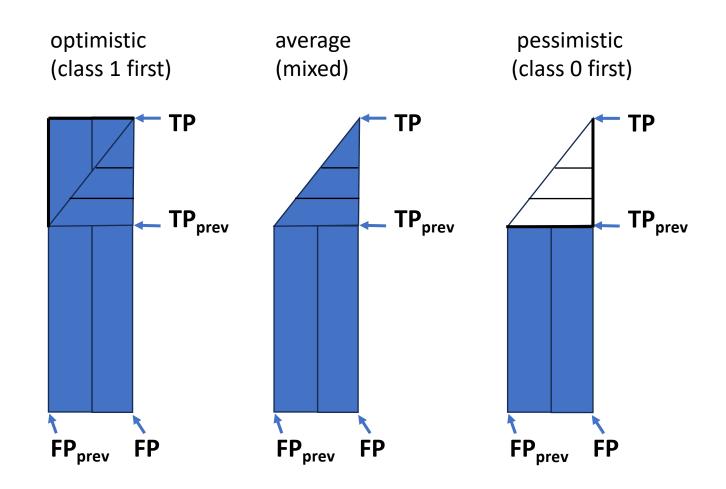


Handling instances with equal score

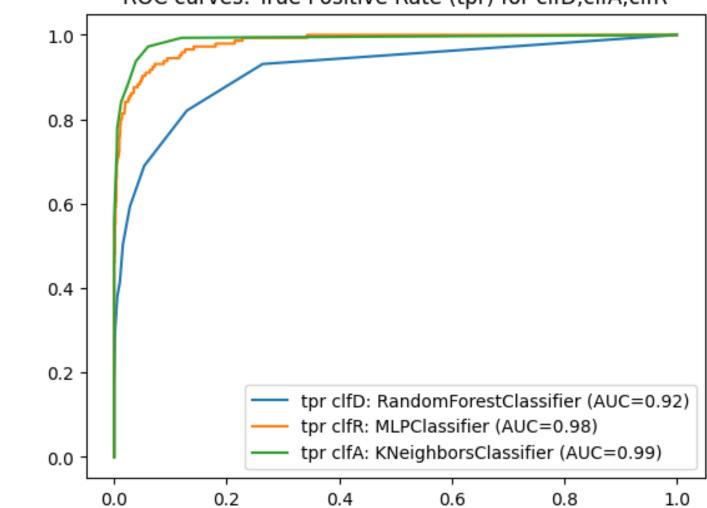
optimistic

#n	class	score
i	1	.7
i+2	1	.7
i+3	1	.7
i+4	0	.7
i+5	0	.7

pessimistic class #n score i+4 0 .7 i+5 0 .7 .7 1 i+2 1 .7 i+3 .7 1



ROC curves obtained with scikit-learn and the digits dataset[^]



ROC curves: True Positive Rate (tpr) for clfD,clfA,clfR

^ using digit 3 as anomaly, and all other digits as normal data

Exercises

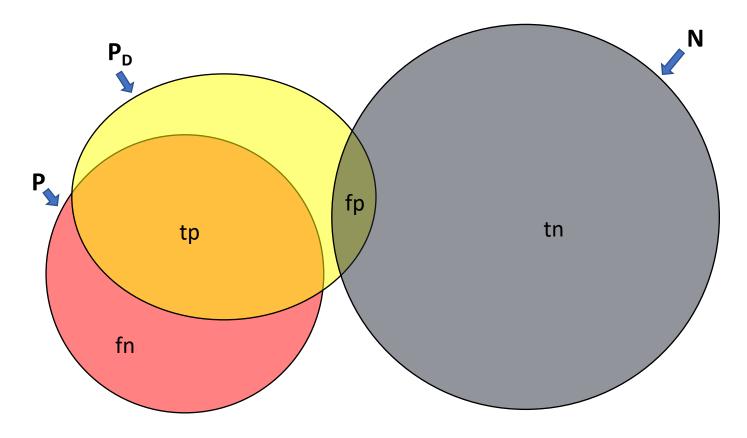
- 1) Learn classifiers using scikit-learn
 - Download the digits data set using Scikit-lean, and relabel digit 3 as *anomaly* and all other digits as *normal*
 - Split the data set into a training set and a test set
 - Learn different models (e.g. random forest, mlp, knn)
- Use the metrics module to evaluate ROC-AUC on the test set, for the learned models (see 1_ROCexamples.py)
- 3) Implement your own ROC-AUC computation, using the trapezoid method

Exercises, part 1)

```
clfA=KNeighborsClassifier(10)
clfD=RandomForestClassifier(max depth=10,
                         n estimators=10)
clfR=MLPClassifier(alpha=1, max iter=1000)
#%% dataset preparation & modification
digits = datasets.load digits()
n samples = len(digits.images)
data = digits.images.reshape((n_samples, -1))
anomaly=3 #3 = anomaly, others = normal
for i in np.arange(digits.target.size):
    if digits.target[i]==anomaly:
                digits.target[i]=1
    else:
                digits.target[i]=0
```

#prepare training&test, fit&predict

X_train, X_test, y_train, y_test =
 train_test_split(data, digits.target,
 test_size=0.8, shuffle=False)
clfD.fit(X_train, y_train)
clfA.fit(X_train, y_train)
clfR.fit(X_train, y_train)
predD = clfD.predict_proba(X_test)[:, 1]
predA = clfA.predict_proba(X_test)[:, 1]
predR = clfR.predict_proba(X_test)[:, 1]

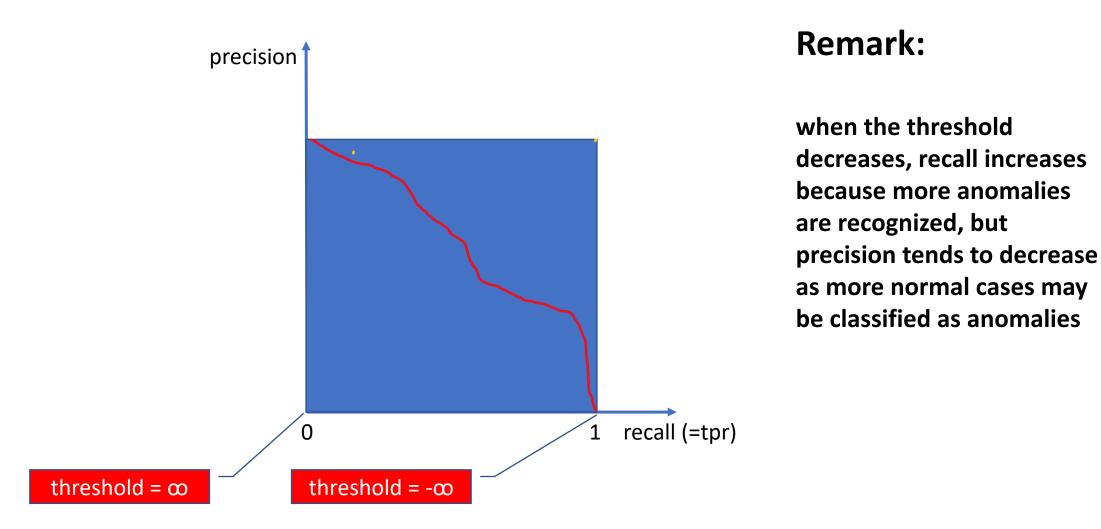


F-measure = F_1 score = 2/[(1/precision)+(1/recall)]

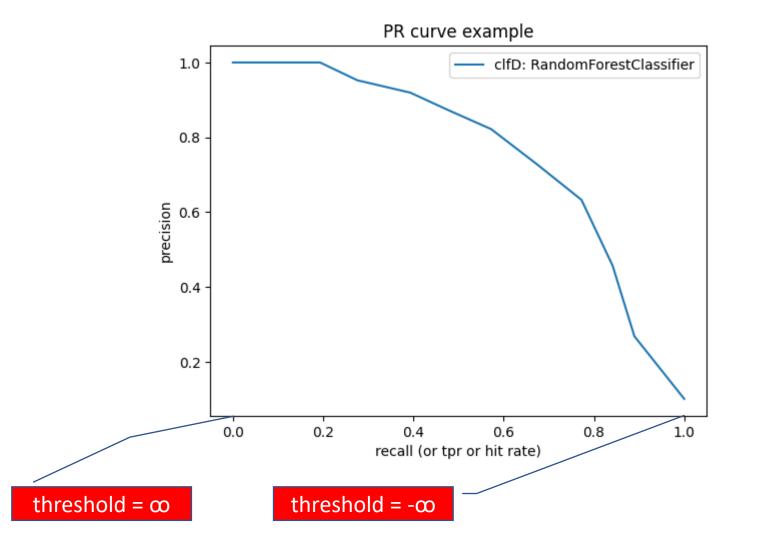
Accuracy, fpr and ROC curves may not work well when classes are highly unbalanced (|N| >> |P|), because fpr is marginally influenced by even large changes in |fp|

In this case we prefer to evaluate a precision vs recall trade-off, using PR curves

Precision Recall curves



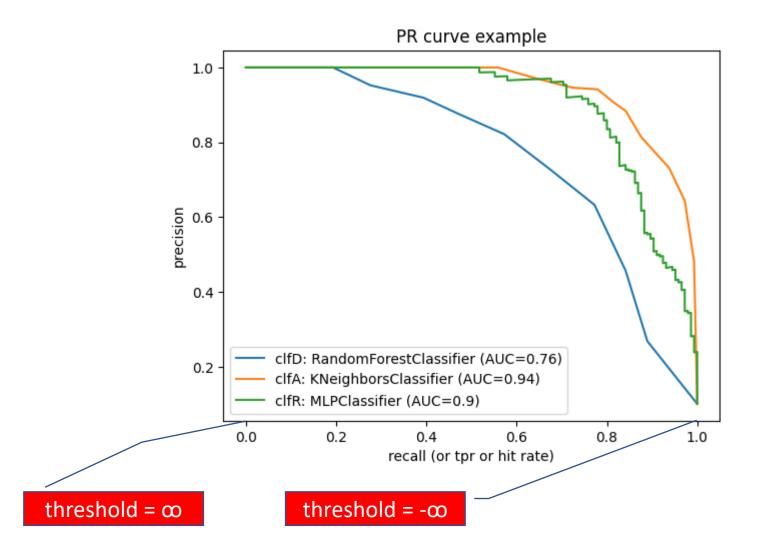
Precision Recall curves: examples



Remark

when the threshold decreases, recall increases because more anomalies are recognized, but precision tends to decrease as more normal cases may be classified as anomalies

Comparing classifiers with PR curves



Remark:

AUC can be computed with the trapezoid method as for ROC curves

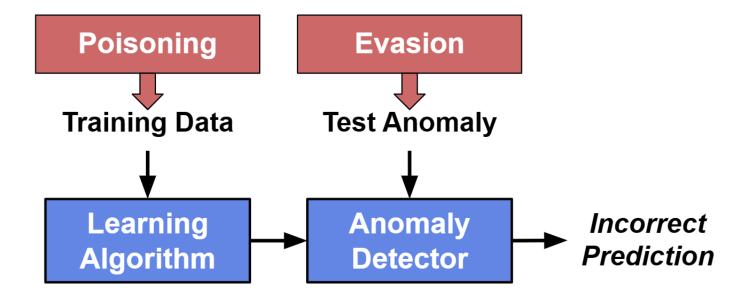
Summary

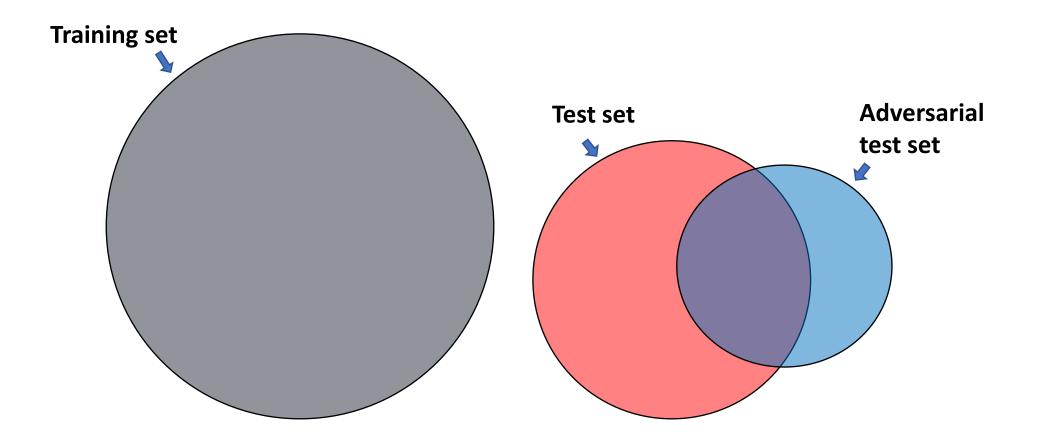
- 1) Cybersecurity Applications of Machine Learning
- 2) Formalization and Metrics
- 3) ROC curve analysis

Adversarial evasion and defenses

Previous work on: Adversarial Examples Evasion resistance metrics Randomization and keyed learning Adversarial actions in anomaly detection contexts

- Data poisoning
- Evasion
 - Selection from an anomaly in the test set
 - Modificatoin of an anomaly in the test set

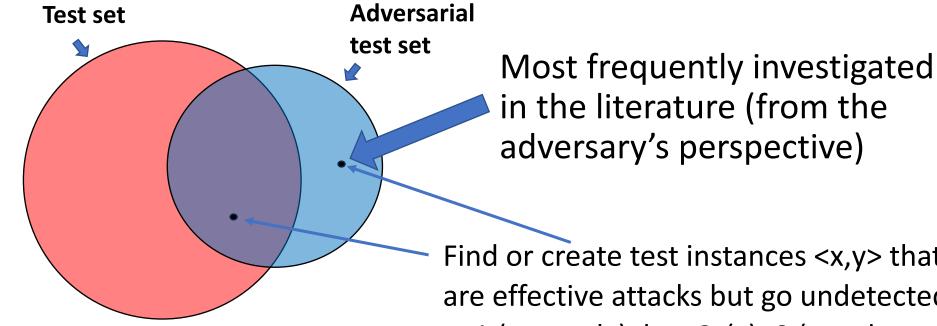




Evasion = adversarial attack at test time:

Training set is not modified Test set is modified, as the adversary can: select a subset of the test set modifiy some instances in the test set

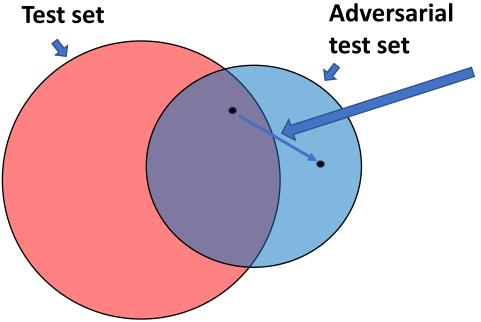
Adversarial objectives



Find or create test instances <x,y> that are effective attacks but go undetected: y=1 (anomaly), but $C_D(x)=0$ (not detected)

Where C_{D} is the classifier learned by the defender using the training set.

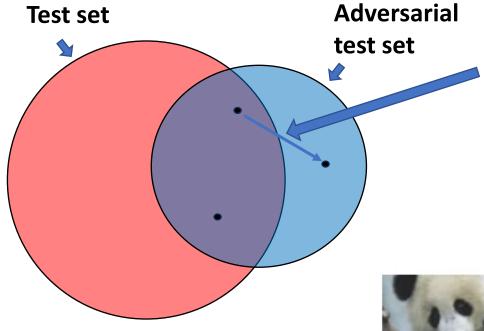
Adversarial examples



Most frequently investigated in the literature (from the adversary's perspective):

modify a test instance that is correctly classified as anomalous, into an apparently similar one that avoids detection

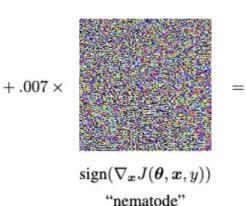
Adversarial examples



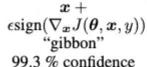
modify a test instance that is correctly classified as anomalous, into an apparently similar one that avoids detection

[2] I. J. Goodfellow, J. Shlens & C. Szegedy. Explaining and harnessing adversarial examples, Proc. ICLR 2015.

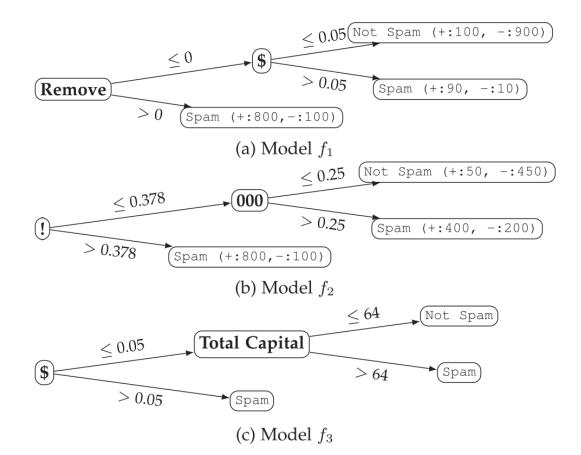
x "panda" 57.7% confidence



8.2% confidence



Adversarial examples in discrete domains [3]



Remove	\$!	000	Total Capital
0	0.2	0.4	0.3	100

(a) Attacker's original spam email

Remove	\$!	000	Total Capital
0	0.05	0.4	0.3	100

(b) Modified email to trick f_1 (bold as changes)

Remove	\$!	000	Total Capital
0	0.05	0.4	0.3	64

(c) Modified email to trick at least two models in Figure 1

Remove	\$!	000	Total Capital
0	0.05	0.378	0.25	100

(d) Modified email to trick f_1 and f_2

[3] Fan Yang, Zhiyuan Chen, and Aryya Gangopadhyay
 Using Randomness to Improve Robustness of Tree-Based Models Against
 Evasion Attacks IEEE Transactions on Knowledge and Data Engineering, 2022

Cost of adversarial examples

We could assign a weigth to each feature, e.g. w(Remove)=0.2, w(\$)=0.1, w(!)=0.1, w(Total Capital)=0.4, w(000)=0.2 When feature F_i of e (e_i) is changed to x, the cost is w(F_i)* |x- e_i|/(max(F_i)-min(F_i)) Suppose max(Total Capital = 200), max(\$)=max(!)=max(000)=max(Remove)=1

then

```
Cost(b)=(.2-.05)*w($)=.015 (tricks only 1 tree)
Cost(c)=(.2-.05)*w($)+
w(Total Capital)*(100-64)/200=.087 (high cost)
Cost(d)=(.2-.05)*w($)+(.4-.378)*w(!)+
(.3-.25)*w(000)=.15*.1+.022*.1+.05*.2=.0272
```

Remove	\$!	000	Total Capital
0	0.2	0.4	0.3	100

(a) Attacker's original spam email

Remove	\$!	000	Total Capital
0	0.05	0.4	0.3	100

(b) Modified email to trick f_1 (bold as changes)

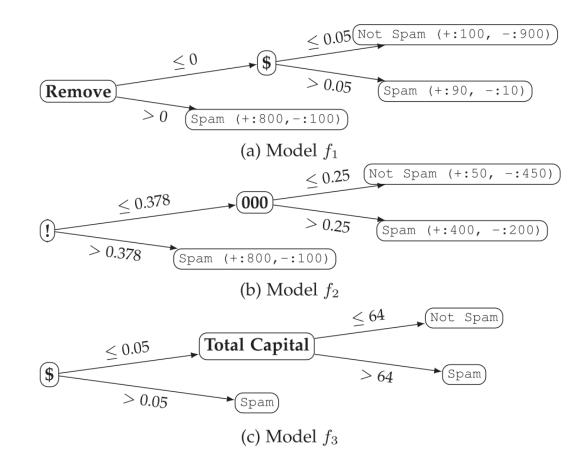
Remove	\$!	000	Total Capital
0	0.05	0.4	0.3	64

(c) Modified email to trick at least two models in Figure 1

Remove	\$!	000	Total Capital
0	0.05	0.378	0.25	100

(d) Modified email to trick f_1 and f_2

Adversarial example generation (instance based greedy search)



[4] A. Kantchelian, J. D. Tygar, A. Joseph. Evasion and Hardening of Tree Ensemble Classifiers, ICML 2016

Remove	\$!	000	Total Capital
0	0.2	0.4	0.3	100

(a) Attacker's original spam email

Input: an anomalous example e and a classification forest F, where each node holds exclusive binary conditionsOutput: an adversarial anomaly a(e), misclassified by F, and the cost of transforming e into a(e)

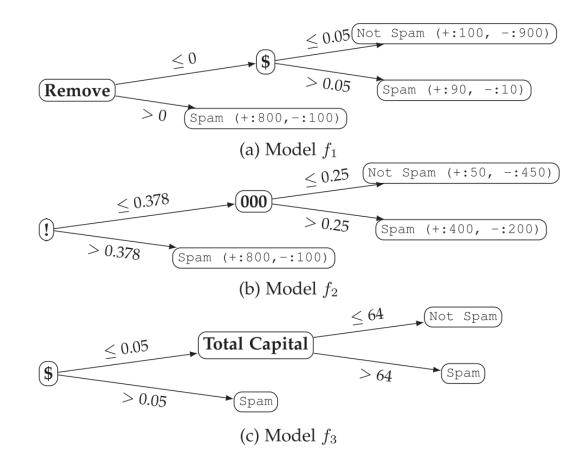
x = instance with the lowest positive score, computed as the number of trees in F classifying x as an anomaly cost=0;

while more than 50% of trees in F classify e as an nomaly:
 select feature i so that changing e_i to x_i has minimum cost
 C_i and maximum benefit (number of trees in F that no longer classify e as an anomaly)

```
e_i = x_i; cost+=C_i
```

return e,cost

Adversarial example generation (model based greedy search)



Exercise: simulate the 2 algorithms on the above forest and spam email, generating an adversarial spam email

Remove	\$!	000	Total Capital
0	0.2	0.4	0.3	100

(a) Attacker's original spam email

Input: an anomalous example e and a classification forest F, where each node holds exclusive binary conditionsOutput: an adversarial anomaly a(e), misclassified by F, and the cost of transforming e into a(e)

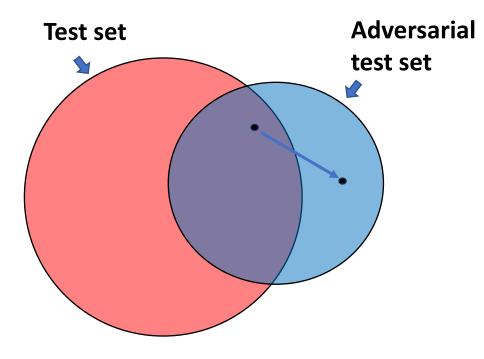
 ${T1, ..., Tn} = random permutation of trees in F e₁=e; cost=0; cond=true;$

for j=1 to [n/2] :

for each path P_i in T_j from root to a 'non-anomaly' leaf: cond_i=the conditions in the path P_i

$$\begin{split} &C_i = cost \ for \ tranforming \ e_j \ into \ a_{i,j} \ so \ that \ cond \& cond_i = true \\ &i_min = argmin_i(C_i); \ cond = cond \ and \ cond_{i_min}; \ cost \ += C_{i_min} \\ &e_{j+1} = a_{i_min,j} \\ &return \ e_{\lceil n/2\rceil + 1}, \ cost \end{split}$$

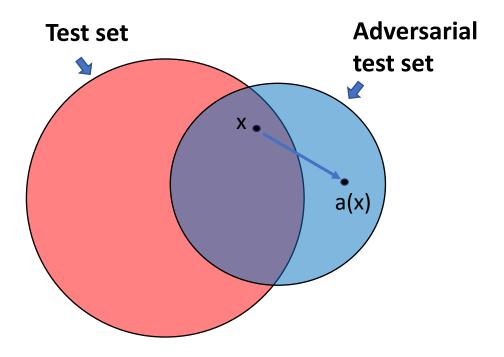
Evasion resistance metrics



Learn evasion resistant classifiers, that make it diffult for the adversary to evade detection

Research question: How do we measure evasion resistance?

Evasion resistance metrics (A)



[4] Dalvi, N., Domingos, P., Mausam, Sanghai, S., Verma, D.: Adversarial classification. In Proc. ACM Int. Conf. Knowledge Discovery Data Mining, 2004

[5] Biggio, B., Fumera, G., Roli, F. (2008). Adversarial Pattern Classification Using Multiple Classifiers and Randomisation. Springer LNCS 5342, 2008

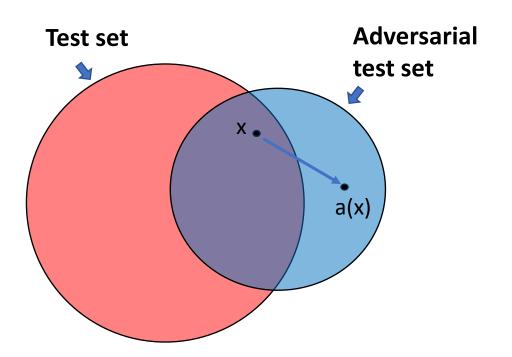
[6] Biggio, B., Corona, I., Maiorca, D., Nelson, B.,
Srndic, N., laskov, P., Giacinto, G., Roli, F.,
Evasion Attacks against Machine Learning at Test
Time, arxiv.org/abs/1708.06131v1, 2017

Adversarial Utility $U_A(x,a(x)) = gain - cost$

where gain = advantage gained by transforming anomaly x into a(x), maximum if $C_D(x)=1$ and $C_D(a(x))=0$ and cost = cost of the transformation of x into y (e.g., computational, or loss of anomaly's effectiveness)

Defender's goals: (1) robustness (minimize adversarial utility) and (2) accuracy

Evasion resistance metrics (B)



[3] Fan Yang, Zhiyuan Chen, and Aryya Gangopadhyay Using Randomness to Improve Robustness of Tree-Based Models Against Evasion Attacks, IEEE TKDE, 2022

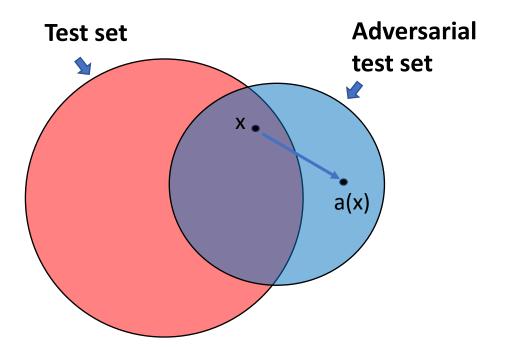
[7] M. Andriushchenko, F. Croce, N. Flammarion, and M. Hein. Square attack: a query-efficient black-box adversarial attack via random search. Euro Conf. on Computer Vision, 2020.

[8] J. Chen and Q. Gu. Rays: A ray searching method for hardlabel adversarial attack. In ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining, 2020.

Measure the cost needed for evasion in terms on an L_p distance d: $d(x, a(x)) = \sum_{j=1} c_j |x_j - a(x)_j|^{1/p}$ where c_j is the cost of the j-th feature and x_i is the value of the j-th feature for test instance x

Defender's goals: (1) robustness (maximize adversary's cost) and (2) accuracy

Evasion resistance metrics (C)



[3] Fan Yang, Zhiyuan Chen, and Aryya Gangopadhyay Using Randomness to Improve Robustness of Tree-Based Models Against Evasion Attacks, IEEE TKDE, 2022

[9] Jing Wu, Mingyi Zhou, Ce Zhu, Yipeng Liu, Mehrtash Harandi, and Li Li. Performance evaluation of adversarial attacks: Discrepancies and solutions. ArXiv 2104.11103, 2021.

Measure adversarial evasion success rate when a maximum cost budget B is allowed

Defender's goals: (1) robustness (minimize adversarial success rate) and (2) accuracy

Evasion resistance methods

- Randomization: make the learned classifier unpredictable for the adversary
- 2) Retrain after adding adversarial examples [10]
- 3) Defensive distillation [11]

During learning

- Random training subset
- Random feature selection
- Ensemble learning
- Post-learning
 - Add random noise
 - Select a random sub-ensemble

[10] H. Lee et al., "Generative adversarial trainer: defense to adversarial perturbations with GAN", ArXiv 1705.03387, 2017
[11] N. Papernot et al., "Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks", IEEE Symposium on Security & Privacy, IEEE 2016

Learning time randomization

- Random training subset [5]
- Random features / parameters
 - Secret feature set [12]
 - Initial weights of a neural network [5]
- Multiple classifiers & Ensemble Learning
 - Random weight sets for SPAM assassin filters, generated via SVMs [5]
 - Weighted random forests [3]

Post-learning (test time) randomization

- Add bounded random noise [12]
 - Binary classifiers (randomly flip classification)
 - Threshold classifiers (add random value to score)
- Select a random sub-ensemble
 - Randomly select some trees in the learned random forest [3]

Randomization using "keys"

Keyed Intrusion Detection

[1] J. E. Tapiador et al., Key-recovery attacks on KIDS, a keyed anomaly detection system, IEEE Trans. Dependable Secure Comput., 2015

[2] R. Bendale et al., KIDS: Keyed Anomaly Detection System, Int. J. Adv. Eng. Res. Dev., 2017

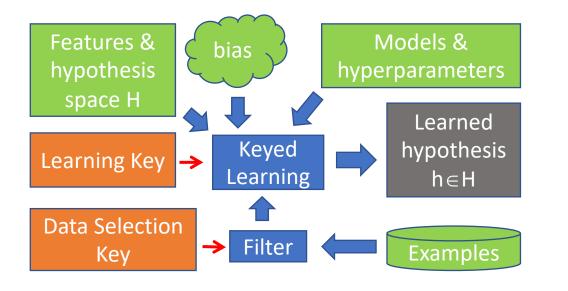
Keyed Learning

[3] F. Bergadano. "Keyed learning: An adversarial learning framework", ETRI Journal 41 (5), 608-618, 2019

Keyed learning

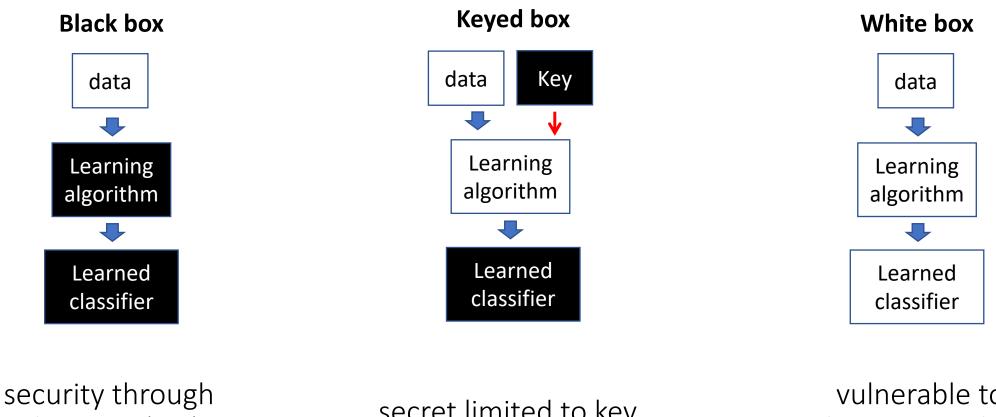
- Keyed Learning = Machine Learning with a (secret) key
- Why: because we do not want the adversary to replicate learning and predict our decisions
- How: use the key to generate secrets, and use them every time some decision is needed during the learning process

Using a key while learning



- 1) Selection of the training examples
- 2) Selection of models & parameters
- 3) Selection of features & H

Keyed learning in anomaly detection and Kerchoff's principle



obscurity (sto)

secret limited to key

vulnerable to learning replay

Summary

- types of adversarial attacks, and evasion & adversarial examples
- evasion resistance metrics
- evasion resistance methods, esp. randomization
- general notion of keyed learning
- «keyed box» threat model

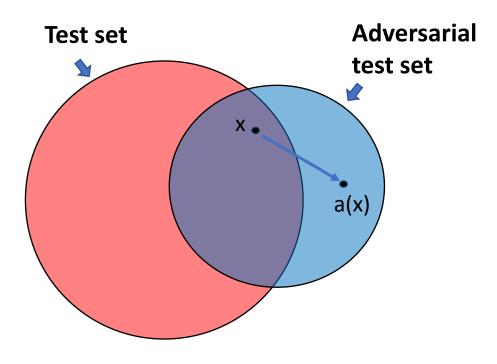
New research on evasion resistance

F. Bergadano, S. Gupta, B. Crispo

1) Metrics:

- adversarial failure rate (afr)
- adversarial failure curves
- AFR-AUC (area under the curve)
- 2) Randomization
 - Trainset size pinning
 - Model matrix
- 3) IDS application

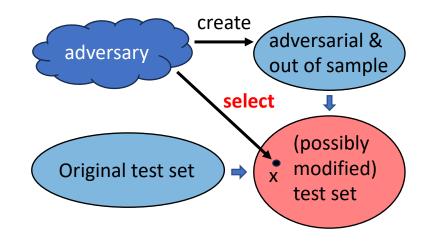
Shortcomings of known evasion resistance measures



(1) We do not know, in practice, how an adversary will behave, and producing an adversarial test set often requires arbitrary and artificial assumptions:
real-world adversarial test sets do not exist

(2) Previous studies do not consider the fact that, in most anomaly detection applications,
C_D is a threshold function. Hence some form of **ROC-curve analysis would be appropriate**

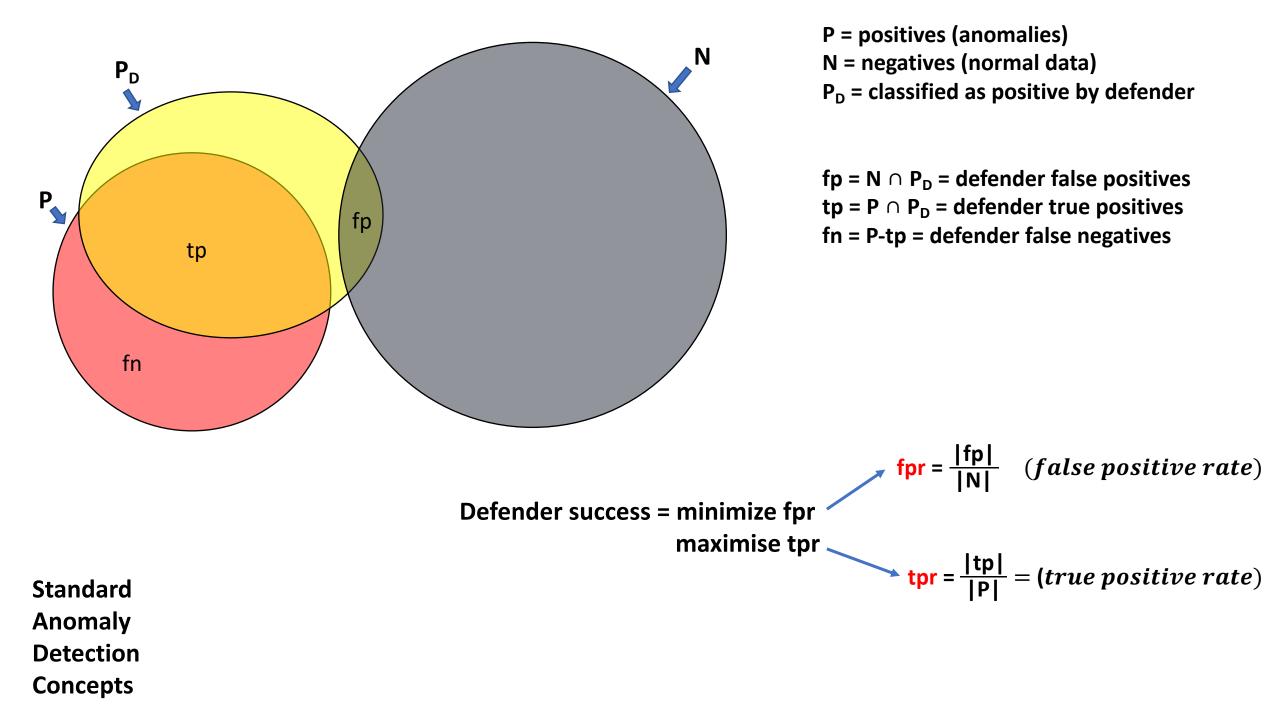
Adversarial test set generation: a different perspective

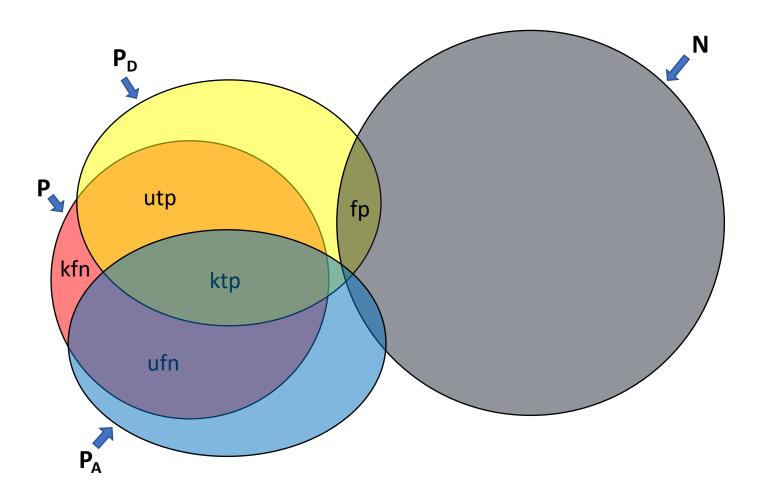


Evaluate, on the possibly modified test set:

(1) ROC-AUCand(2) afr-AUC*

*adversarial failure rate





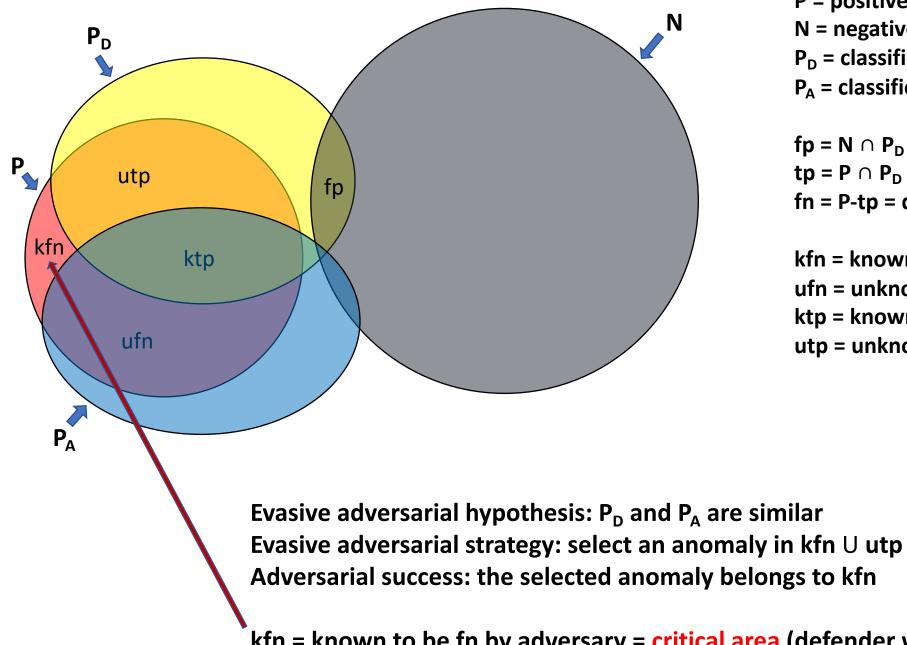
P = positives (anomalies)
N = negatives (normal data)
P_D = classified as positive by defender
P_A = classified as positive by adversary

fp = N \cap P_D = defender false positives tp = P \cap P_D = defender true positives fn = P-tp = defender false negatives

kfn = known false negatives ufn = unknown false negatives ktp = known true positives utp = unknown true positives

Extension to Adversarial

Context

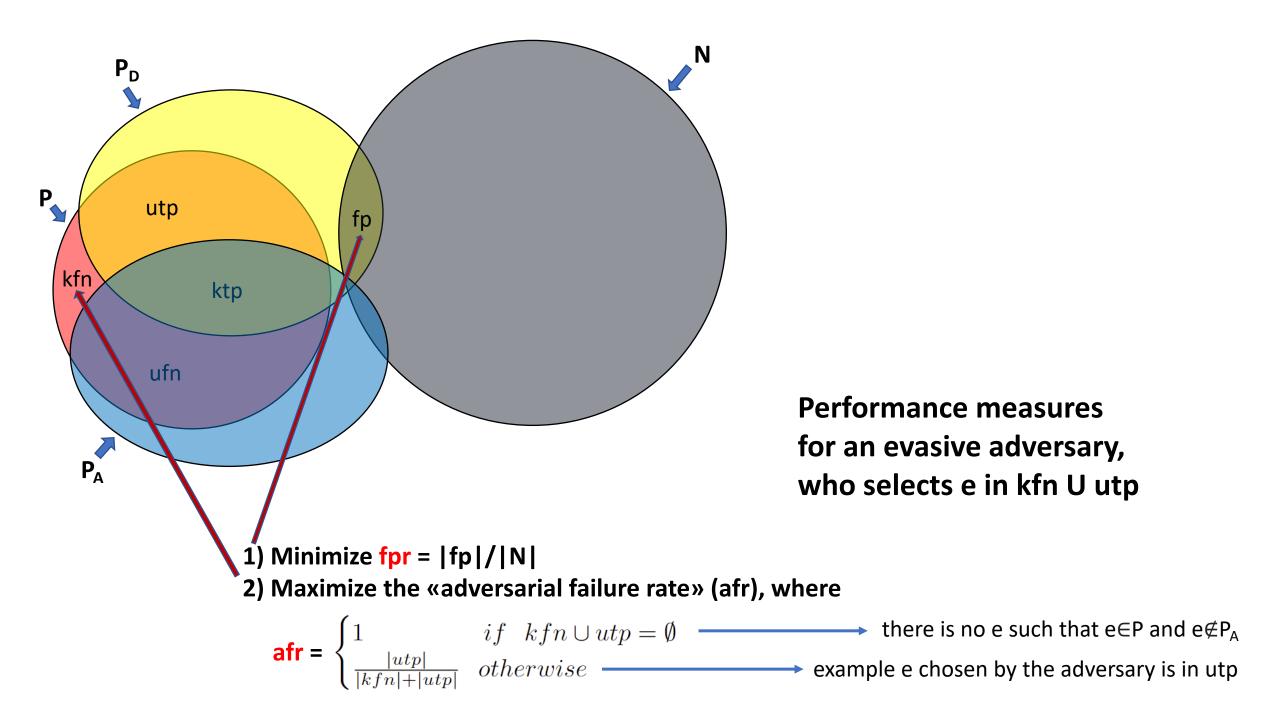


P = positives (anomalies)
N = negatives (normal data)
P_D = classified as positive by defender
P_A = classified as positive by adversary

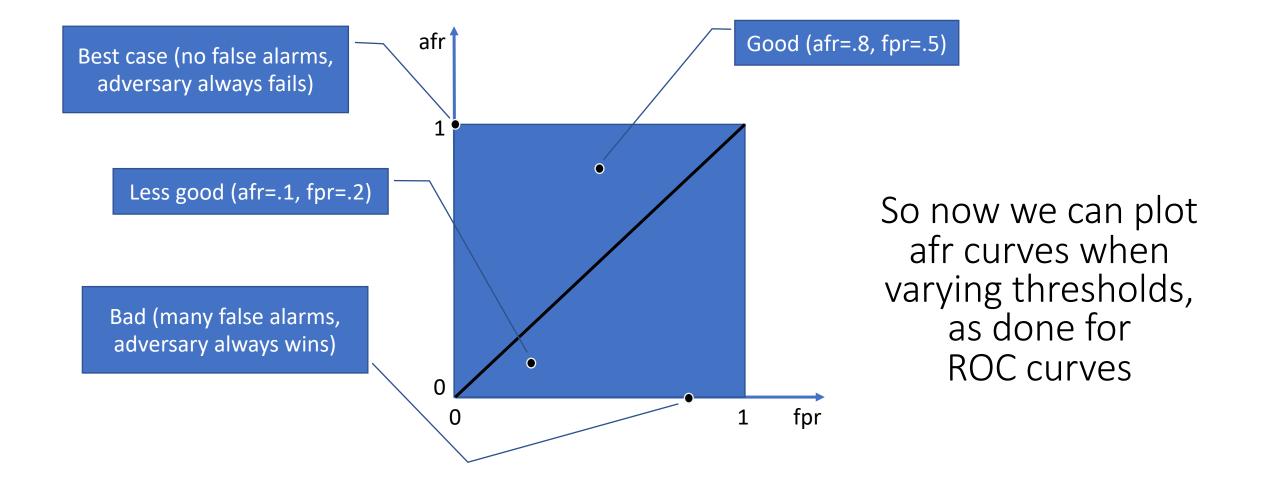
fp = N \cap P_D = defender false positives tp = P \cap P_D = defender true positives fn = P-tp = defender false negatives

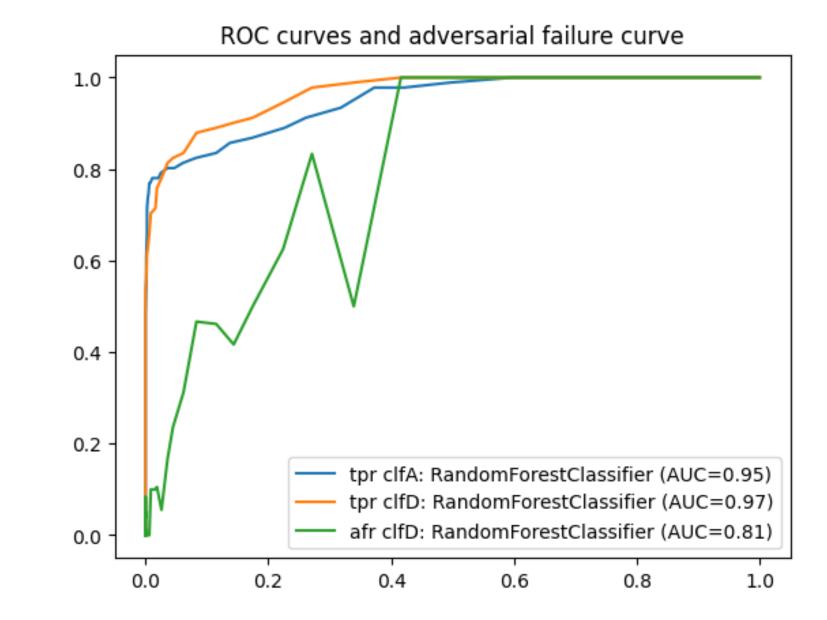
kfn = known false negatives ufn = unknown false negatives ktp = known true positives utp = unknown true positives

kfn = known to be fn by adversary = critical area (defender wants to minimize this)



New notion: afr space







Summary

- Evasive adversary threat model:
 - tries to replicate the defender's learning step
 - wants to evade detection by selecting test examples that are false negatives
- Definition of adversarial failure rate (afr)
 - adversarial failure = attack detected or evasion impossible
- Adversarial failure curves (based on afr)
 - afr_AUC as a good measure of evasion resistance

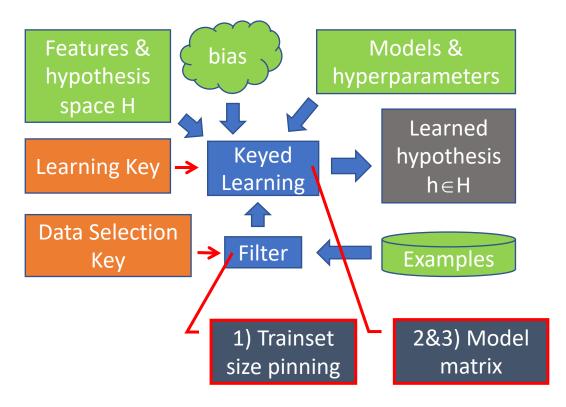
New Randomization Techniques

New randomization techniques, targeting evasion resistance as measured by AFR-AUC:

1) Training set size pinning

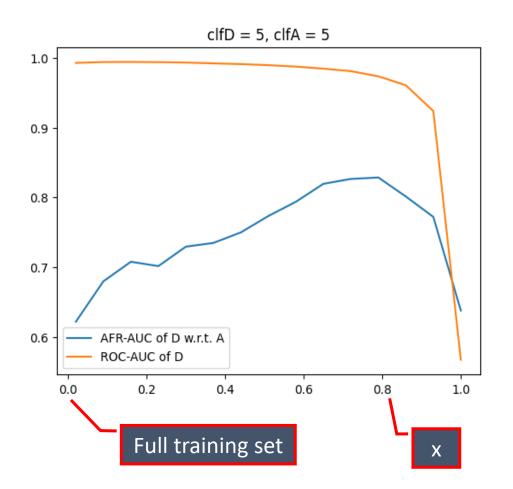
2) Model Matrix

How can we randomize the learning process?



- 1) Selection of the training examples
- 2) Selection of models & parameters
- 3) Selection of features & H

1) Randomize by selecting training examples: training set size pinning



Assumption: the adversary knows all training data T

Idea:

- 1) Use a secret and random training subset $T_i \subseteq T$
- Pin the optimal size x of T_i by induction,
 i.e. the size of T_i that will maximise
 AFR-AUC on a validation set

2) Randomize with model matrix

afrAUC for different combinations of clfA and clfD (trainSize=1.0)*

clfA	knn	random forest	adaboost
clfD		TOTESL	
knn	0.46	0.91	0.99
random forest	0.72	0.80	0.92
adaboost	0.89	0.92	0.62

Defender randomly picks a row Adversary randomly picks a comumn (each combination has equal probability)

combined afr = average afr* = 0.8

*data obtained with the scikit-learn digits dataset

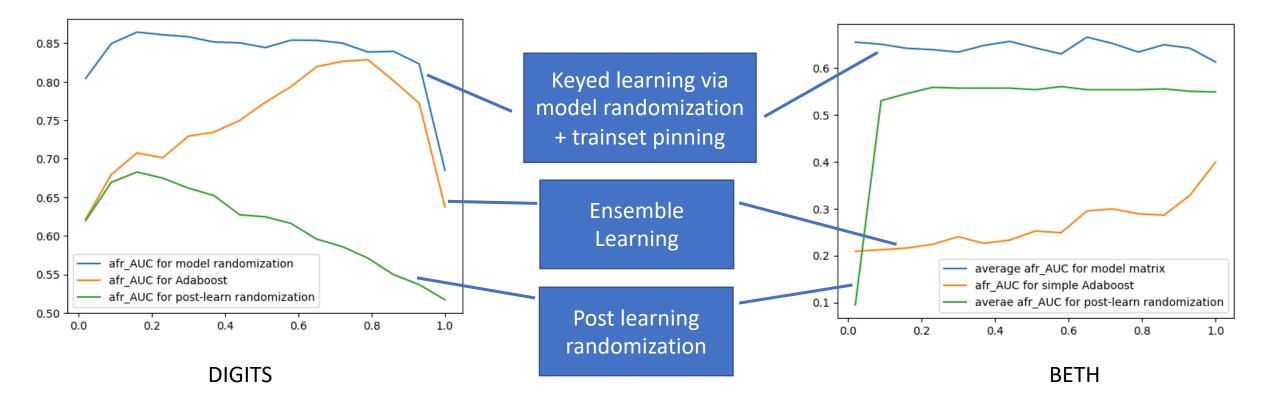
Application to IDS (with the Beth dataset)

Comparing well-known randomization methods to our combined techniques (training set size pinning and model matrix) w.r.t. AFR-AUC

The Beth^[1] data set

- Context and data sources
 - more than 8 million total labeled data points, tracking 23 honeypots for 9 hours
 - working subset of 1,141,078 data points as suggested in [1]
- Features and classes
 - 14 numeric and discrete features, plus 2 binary class labels ('sus', 'evil')
- Preprocessing
 - we implemented a preprocessing phase as suggested in appendix A of [1]
 - after checking with the authors, we removed one additional feature (userId), that would have otherwise made the problem too easy

[1] Kate Highnam, Kai Arulkumaran, Zachary Hanif, and Nicholas R. Jennings. "Beth Dataset: real cybersecurity data for anomaly detection research", Conf. Applied ML for Inf. Security (CAMLIS 2021).



Conclusions

- New performance measure for evasion avoidance:
 - afr (adversarial failure rate) curves and AFR-AUC
- New randomization schemes:
 - Training set randomization via trainset size pinning
 - Model matrix
- Experimental comparison using two different data sets (digits, Beth) + work in progress with Kyoto IDS:
 - Combination of model matrix & training set size pinning
 - Post-learning randomization
 - Randomization intrinsic in ensemble learning

Consistently superior

References

[1] Kate Highnam, Kai Arulkumaran, Zachary Hanif, and Nicholas R. Jennings. "Beth Dataset: real cybersecurity data for anomaly detection research", Conf. Applied ML for Inf. Security (CAMLIS 2021).

[2] F. Bergadano. "Keyed learning: An adversarial learning framework", ETRI Journal 41 (5), 608-618, 2019

[3] T. Fawcett. "An introduction to ROC analysis", Pattern Recognition Letters 27, pp. 861-874, 2006

[4] S. Rota Bulò et al., "Randomized prediction games for adversarial machine, learning", IEEE Trans. Neural Netw. Learn. Syst. 28 (2017), no. 11, 2466–2478

[5] O. Taran, S. Rezaeifar, T. Holotyak, S. Voloshynovskiy. "Machine learning through cryptographic glasses: combating adversarial attacks by key-based diversified aggregation", EURASIP J. Inf. Secur. 2020

[6] B. Biggio, F. Roli, "Wild patterns: Ten years after the rise of adversarial machine learning", in Proc. ACM SIGSAC Conference on Computer and Communications Security, CCS '18, New York, NY, USA, 2018

[7] F. Yang et al., "Using Randomness to Improve Robustness of Tree-based Models against Evasion Attacks", IEEE Trans. KDE, 34(2), pages 969-982, 2022

[8] R. S. Mrdovic and B. Drazenovic, "KIDS: a Keyed Intrusion Detection System", Proc. DIMVA 2010.