# **Bluetooth Security**



NECS winter school, Jan 2024, Cortina

Daniele Antonioli (EURECOM)

# Ciao! I am Daniele Antonioli

- Prof at <u>EURECOM (S3</u>)
  - French riviera, 2, 4



- Wireless (Bluetooth and Wi-Fi)
- Embedded (cars, e-scooters, and fitness trackers)
- Mobile (smartphones, Android)
- Cyber-physical systems (MiniCPS, ICS)
- More at <a href="https://francozappa.github.io/">https://francozappa.github.io/</a>
  - Search talk material on <u>publications</u>





#### **ORSHIN** EU Grant (I am the technical lead)

ORSHIN: Opensource ReSilient Hardware and software for Internet of thiNgs

How to design embedded and connected devices taking advantage of open source hardware (and software)



Daniele Antonioli - BLUFFS: Bluetooth Forward and Future Secrecy Attacks and Defenses

# EURECOM S3 Group [site]

EURECOM sophia Antipolis

• Four faculties:



- O. Balzarotti, A. Francillon, D. Antonioli, S. Aonzo
- Research topics (<u>publications</u>)
  - Malware, Binary, Vulnerability, Fuzzing, Web, Embedded, Wireless, Forensics, Protocols, ...
- Hiring
  - Postdoc, PhD, RA, ...
  - Interested? Reach out to me, or send me an email

### Talk Outline

- Introduction about Bluetooth Security
- Bluetooth standard protocols issues
  - BLUR attacks [AsiaCCS'22]
  - BIAS and KNOB attacks on automotive [WOOT'22, ASRG'22,AutoISAC'22, Oakland'20, TOPS'20, SEC'19]
  - BLUFFS attacks [CCS'23, 37C3]

• Proprietary protocols issues (still over Bluetooth)

- E-Spoofer attacks on Xiaomi e-scooters [WiSec'23]
- BreakMi attacks on Xiaomi and Fitbit trackers [CHES'22,Hardwear.io'23]

# Introduction about Bluetooth Security

# Bluetooth (BT)

- BT is a pervasive low-power wireless technology
  - Specified in <u>bluetooth-core.pdf (v5.4)</u>
  - BC: Bluetooth Classic (high throughput)
  - BLE: Bluetooth Low Energy (very low power)
  - Interoperable aka used by <u>billions of heterogeneous devices</u>, e.g., smartphones, laptops, cars, wearables, sensors, medical, ...



Massimo 🤣 @Rainmaker1973

Subscribe ...

Fun fact.

Bluetooth is the Anglicised version of the Scandinavian Blåtand, the epithet of King Harald Bluetooth, who united the disparate Danish tribes into a single kingdom

# BT Logo (<u>ref</u>)



Daniele Antonioli - BLUFFS: Bluetooth Forward and Future Secrecy Attacks and Defenses

# BT Specification (ref)

- BT specification
  - Defines technologies to create *interoperable* BT devices
  - Transports: BC, BLE, ...
  - Components: Host, Controller, HCI, ...
  - Security: Pairing, Session establishment, ...

One BT spec vulnerability → Billions of exploitable devices

- 2021: BLUR cross-transport overwrites on <u>BC and BLE</u>
- 2020: BIAS authentication bypasses on <u>BC</u>
- 2019: KNOB key downgrades on <u>BC</u> and <u>BLE</u>

# **BT Security**

- Pairing
  - Pairing key (PK), long term, BLE entropy negotiation
  - Optionally authenticated (numeric PIN, ...)
- Session Establishment
  - Session key (SK), fresh, BC entropy negotiation
  - o SK = kdf(PK, pars)
- Negotiable security mode
  - Secure Connections (SC)
  - Legacy Secure Connections (LSC)

11

# Talk Threat model

- BC and BLE should provide
  - Confidentiality, integrity, authenticity
  - Via pairing and session establishment
- Alice (Central) and Bob (Peripheral)
  - Share PK
  - Use SC or LSC
- Charlie (attacker)
  - Model: proximity-based, cannot compromise PK or all SKs
  - Goals: break pairing and session establishment
  - Impact: impersonate and MitM devices



# BLUR Attacks [AsiaCCS'22]

#### BT and BLE Security Are Considered Separately



#### We Blur the Security Boundary abusing CTKD



#### We perform Cross-Transport Attacks on BT and BLE



#### **BLUR Attacks: Cross-Transport Central Impersonation**





What happens if Charlie tries to pair over BLE with Bob while impersonating Alice?

#### **NEW: Cross-transport Central Impersonation**

#### **BLUR Attacks: Cross-Transport Central Impersonation**



# BLUR Attacks: Cross-Transport Central Impersonation (2)



#### **BLUR Attacks: Cross-Transport Peripheral Impersonation**



#### **BLUR Attacks: Cross-Transport MitM**



21

#### Evaluation: Exploiting 16 devices (14 unique chips)

| Device   |                 |             | Chip     |             | Bluetooth     | BLUR Attack |              |              |              |
|----------|-----------------|-------------|----------|-------------|---------------|-------------|--------------|--------------|--------------|
| Producer | Model           | OS          | Producer | Model       | Version       | Role        | MI/SI        | MitM         | US           |
| Cypress  | CYW920819EVB-02 | Proprietary | Cypress  | CYW20819    | 5.0           | Peripheral  | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Dell     | Latitude 7390   | Win 10 PRO  | Intel    | 8265        | 4.2           | Peripheral  | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Google   | Pixel 2         | Android     | Qualcomm | SDM835      | 5.0           | Peripheral  | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Google   | Pixel 4         | Android     | Qualcomm | 702         | 5.0           | Peripheral  | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Lenovo   | X1 (3rd gen)    | Linux       | Intel    | 7265        | 4.2           | Peripheral  | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Lenovo   | X1 (7th gen)    | Linux       | Intel    | 9560        | 5.1           | Peripheral  | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Samsung  | Galaxy A40      | Android     | Samsung  | Exynos 7904 | 5.0           | Peripheral  | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Samsung  | Galaxy A51      | Android     | Samsung  | Exynos 9611 | 5.0           | Peripheral  | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Samsung  | Galaxy A90      | Android     | Qualcomm | SDM855      | 5.0           | Peripheral  | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Samsung  | Galaxy S10      | Android     | Broadcom | BCM4375     | 5.0           | Peripheral  | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Samsung  | Galaxy S10e     | Android     | Broadcom | BCM4375     | 5.0           | Peripheral  | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Samsung  | Galaxy S20      | Android     | Broadcom | BCM4375     | 5.0           | Peripheral  | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Xiaomi   | Mi 10T Lite     | Android     | Qualcomm | 9312        | 5.1           | Peripheral  | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Xiaomi   | Mi 11           | Android     | Qualcomm | 10765       | 5.2           | Peripheral  | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Sony     | WH-1000XM3      | Proprietary | CSR      | 12414       | 4.2           | Central     | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Sony     | WH-CH700N       | Proprietary | CSR      | 12942       | $4.1^\dagger$ | Central     | $\checkmark$ | $\checkmark$ | $\checkmark$ |

22

KNOB and BIAS attacks on automotive IVI [WOOT'22, ASRG'22, AutoISAC'22, Oakland'20, TOPS'20, SEC'19]

#### Bluetooth In-Vehicle Infotainment (IVI) Unit



#### Common Bluetooth Services provided by IVIs

| Bluetooth profile           | Acronym | Vehicle action             |  |  |  |
|-----------------------------|---------|----------------------------|--|--|--|
| Advanced audio distribution | A2DP    | Stream music from a source |  |  |  |
| Audio/Video remote control  | AVRCP   | Control music/video player |  |  |  |
| Hands-free                  | HFP     | Manage calls               |  |  |  |
| Message access              | MAP     | Read SMS                   |  |  |  |
| OBject EXchange             | OBEX    | Send/receive data          |  |  |  |
| PAN Network Encapsulation   | BNEP    | Join Internet connection   |  |  |  |
| Phone book access           | PBA     | Read contacts              |  |  |  |
| Serial Port                 | SPP     | Emulate a serial port      |  |  |  |
| SIM access                  | SAP     | Access a SIM card          |  |  |  |

#### **Bluetooth Threats for Vehicles**

- Implementation Level Bluetooth Threats (ILBT)
  - Mature research area (buffer overflows, use after free, ...)
  - E.g. Salinas IVI RAT exploiting D-Bus, Bluetooth and SMS
- Protocol Level Bluetooth Threats (PLBT)
  - **Unexplored** and **impactful** (portable attacks)
  - E.g., <u>BIAS impersonation</u> [Oakland'21]
  - E.g., <u>KNOB key downgrade</u> [SEC'20, TOPS'20]

#### Attack Scenario: Bluetooth Pairing

- 1. Pair the IVI (car) with a phone
- 2. Devices generate a long-term pairing key
- 3. Accept all permissions and synch data



#### Attack Scenario: Bluetooth Session Establishment

- 1. Authenticate the pairing key
- 2. Negotiate a session key
- 3. Encrypt the traffic
- 4. Use Bluetooth services (audio, calls, Internet, ...)



Daniele Antonioli - On the Insecurity of Vehicles Against Protocol-Level Bluetooth Threats

#### Attack Scenarios: <u>BIAS</u>+<u>KNOB</u> Impersonation Attack

- 1. Start a session with IVI spoofing the trusted phone
- 2. Skip pairing key authentication (**BIAS attack**)
- Negotiate a low entropy session key and brute force it (KNOB attack)



#### Attack Scenarios: **BIAS**+KNOB MitM Attack

- 1. Impersonate trusted smartphone to car IVI
- 2. Impersonate trusted car IVI to smartphone
- 3. Machine-in-the-middle their connection



# Testing PLBTs on IVIs (ala Car Hacking: For Poories)

#### • Lab experiments

- Buy popular IVIs second-hand
- Power them up in the lab
- Evaluate them against PLBTs

## • On-the-road experiments

- Drive our cars to a safe environment
- Evaluate them against PLBTs
- Testing equipment
  - o power supply, cables, laptop, devboards, ...





#### Eval: All tested IVIs are vulnerable to BIAS+KNOB

|                                                                           | L                    | OtR                  |                      |                      |                      |
|---------------------------------------------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
|                                                                           | KIA 96560-B2211CA    | Toyota PT546-00170   | Suzuki IGNIS         | Skoda Fabia          | Skoda Octavia        |
|                                                                           | Car unit             | Car unit             | Car                  | Car                  | Car                  |
| Session issues                                                            |                      |                      |                      |                      |                      |
| Entropy downgrade<br>Role switch auth bypass<br>Vulnerable to KNOB & BIAS | 1 byte<br>Yes<br>Yes |
| Pairing issues                                                            |                      |                      |                      |                      |                      |
| Always Discoverable<br>Always Pairable<br>Just Works Downgrade            | No<br>Yes<br>Yes     | No<br>No<br>Yes      | No<br>No<br>No       | Yes<br>Yes<br>Yes    | Yes<br>Yes<br>Yes    |

# Eval: IVIs pairing caps are OK, session caps are NOT

|                              | L                 | <u>OtR</u>         |              |             |               |
|------------------------------|-------------------|--------------------|--------------|-------------|---------------|
|                              | KIA 96560-B2211CA | Toyota PT546-00170 | Suzuki IGNIS | Skoda Fabia | Skoda Octavia |
|                              | Car unit          | Car unit           | Car          | Car         | Car           |
| Pairing capabilities         |                   |                    |              |             |               |
| Secure Simple Pairing (SSP)  | Yes               | Yes                | Yes          | Yes         | Yes           |
| Input Output                 | Display           | Display            | Display      | Display     | Display       |
| Authentication Requirement   | AitM              | None               | AitM         | AitM        | AitM          |
| Association                  | Num Comp          | Num Comp           | Num Comp     | Num Comp    | Num Comp      |
| Session capabilities         |                   |                    |              |             |               |
| Secure Connections (SC)      | No                | No                 | No           | No          | No            |
| Unilateral authentication    | Yes               | Yes                | Yes          | Yes         | Yes           |
| E <sub>0</sub> cipher (weak) | Yes               | Yes                | Yes          | Yes         | Yes           |

# BLUFFS Attacks [CCS'23, 37c3]

#### Forward and Future Secrecy (FoS, FuS)

- Forward Secrecy (FoS)
  - Protects past sessions against key compromise
  - o Eg: key = HKDF(const, key\_past)
- Future Secrecy (FuS)
  - Protects future sessions against key compromise
  - o Eg: key\_future = HKDF(dhss, key)

35

# BT FoS and FuS?

- Not discussed in the BT specification
- **No prior** evaluations (academia, industry, ...)
- Despite **widespread** real-world usage (TLS1.3, Signal, ...)
- **BLUFFS research** fills this relevant gap!

36
### **BLUFFS** Threat model



- BC should provide FoS and FuS among sessions
  - long term PK is not compromised
  - fresh SK derivation is not vulnerable
- Alice (Central) and Bob (Peripheral)
  - Share PK
  - Use SC or LSC
- Charlie (attacker)
  - Model: proximity-based, cannot compromise PK or all SKs
  - Goals: break sessions' FoS and FuS
  - Impact: impersonate and MitM devices across sessions Daniele Antonioli - BLUFFS: Bluetooth Forward and Future Secrecy Attacks and Defenses

### **BLUFFS Attacks**



- $t_0$ : Alice and Bob establish PK
- t<sub>1</sub>: Charlie forces weak SK<sub>c</sub>, saves SK<sub>c</sub> kdf pars, sniffs s<sub>t1</sub>, ...
- $t_2$ : Charlie brute forces  $SK_c$  and breaks  $s_{t1}$ , ...,  $s_{t2}$  (breaks FoS)
- $t_3$ : Charlie re-forces SK<sub>c</sub> and breaks  $s_{t3}$ ,  $s_{t4}$ , ... (breaks FuS)

### **BLUFFS Attacks**





- t<sub>0</sub>: Alice and Bob establish PK
- $t_1$ : Charlie forces weak SK<sub>c</sub>, saves SK<sub>c</sub> kdf pars, sniffs  $s_{t_1}$ , ...
- $t_2$ : Charlie brute forces  $SK_c$  and breaks  $s_{t1}$ , ...,  $s_{t2}$  (breaks FoS)
- $t^{}_3$ : Charlie re-forces  $\mathsf{SK}_c$  and breaks  $s^{}_{t3}$ ,  $s^{}_{t4}$ , ... (breaks FuS)
- t<sub>∞</sub>: Charlie celebrates (One More Time)!

### t<sub>1</sub>: Force weak SK<sub>c</sub>, save SK<sub>c</sub> kdf pars, sniff



Daniele Antonioli - BLUFFS: Bluetooth Forward and Future Secrecy Attacks and Defenses

- $t_2$ : Brute force SK<sub>c</sub> and break  $s_{t1}$ , ...,  $s_{t2}$  (break FoS)
- SK<sub>c</sub> has 56 bits of entropy (SE = 7)
  - $\circ$  2<sup>55</sup> trials on average (other than 2<sup>55</sup> x sessions)
  - 56 bit sym keys broken since DES (<u>Deep Crack</u>, <u>COPACOBANA</u>)
  - <u>keylenght.com</u> sets a min of 84 bits (56 bits in 1982)
  - Doable in weeks with a low-cost setup
- SK<sub>c</sub> has 8 bits of entropy (SE = 1)
  - Doable in real time (even with pen and paper)



Daniele Antonioli - BLUFFS: Bluetooth Forward and Future Secrecy Attacks and Defenses



Daniele Antonioli - BLUFFS: Bluetooth Forward and Future Secrecy Attacks and Defenses

#### $t_3$ : Re-force SK<sub>c</sub> and break $s_{t_3}$ , $s_{t_4}$ , ... (break FuS) Alice (Central) Charlie (MitM) **Bob (Peripheral)** BA<sub>R</sub>, LSC $BA_{A}$ , LSC $BA_{R}$ , SC or LSC **BA**, SC or LSC BIAS PK auth skip Role switch, AC AC CR CR SE = 7 SE = 7 KNOB SK downgrade SK entropy OK SK entropy OK SD SD SK<sub>C</sub>= kdf(PK, LSC, BA<sub>R</sub>, AC, SE, SD) Knows SK<sub>c</sub> SK<sub>c</sub>= kdf(PK, LSC, BA<sub>R</sub>, AC, SE, SD) $c1 = Enc(m1, SK_c)$ c1 c2 $c2 = Enc(m2, SK_c)$

Daniele Antonioli - BLUFFS: Bluetooth Forward and Future Secrecy Attacks and Defenses

#### Six BLUFFS Attacks Labels

- **A1**: Spoofing a LSC Central (t<sub>3</sub>)
- **A2**: Spoofing a LSC Peripheral (t<sub>3</sub>)
- **A3**: MitM LSC victims  $(t_1, t_3)$
- **A4**: Spoofing a SC Central (t<sub>3</sub>)
- **A5**: Spoofing a SC Peripheral (t<sub>3</sub>)
- **A6**: MitM SC victims  $(t_1, t_3)$

### BLUFFS Attacks Exploiting 18 devices (17 chips)

| Chip                           | Device(s)                                 | BTv | A1           | A2           | A3           | A4           | A5           | A6           |
|--------------------------------|-------------------------------------------|-----|--------------|--------------|--------------|--------------|--------------|--------------|
| LSC Victims                    |                                           |     |              |              |              |              |              |              |
| Bestechnic BES2300             | Pixel Buds A-Series <sup>3</sup>          | 5.2 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Apple H1                       | AirPods Pro                               | 5.0 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Cypress CYW20721               | Jaybird Vista                             | 5.0 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| CSR/Qualcomm BC57H687C-GITM-E4 | Bose SoundLink <sup>1,2</sup>             | 4.2 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Intel Wireless 7265 (rev 59)   | Thinkpad X1 3rd gen                       | 4.2 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| CSR n/a                        | Logitech BOOM 3 <sup>1</sup>              | 4.2 | $\checkmark$ | ×            | $\checkmark$ | $\checkmark$ | ×            | $\checkmark$ |
| SC Victims                     |                                           |     |              |              |              |              |              |              |
| Infineon CYW20819              | CYW920819EVB-02                           | 5.0 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Cypress CYW40707               | Logitech MEGABLAST                        | 4.2 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| Qualcomm Snapdragon 865        | Mi 10T <sup>4</sup>                       | 5.2 | $\checkmark$ | $\checkmark$ | $\checkmark$ | ×            | ×            | ×            |
| Apple/USI 339S00761            | iPhones 12 <sup>4</sup> , 13 <sup>4</sup> | 5.2 | $\checkmark$ | $\checkmark$ | $\checkmark$ | ×            | ×            | ×            |
| Intel AX201                    | Portege X30-C <sup>4</sup>                | 5.2 | $\checkmark$ | $\checkmark$ | $\checkmark$ | ×            | ×            | ×            |
| Broadcom BCM4389               | Pixel 6 <sup>4</sup>                      | 5.2 | $\checkmark$ | $\checkmark$ | $\checkmark$ | ×            | ×            | ×            |
| Intel 9460/9560                | Latitude 5400 <sup>4</sup>                | 5.0 | $\checkmark$ | $\checkmark$ | $\checkmark$ | ×            | ×            | ×            |
| Qualcomm Snapdragon 835        | Pixel 2 <sup>4</sup>                      | 5.0 | $\checkmark$ | $\checkmark$ | $\checkmark$ | ×            | ×            | ×            |
| Murata 339S00199               | iPhone 7 <sup>4</sup>                     | 4.2 | $\checkmark$ | $\checkmark$ | $\checkmark$ | ×            | ×            | ×            |
| Qualcomm Snapdragon 821        | Pixel XL <sup>4</sup>                     | 4.2 | $\checkmark$ | $\checkmark$ | $\checkmark$ | ×            | ×            | ×            |
| Qualcomm Snapdragon 410        | Galaxy J5 <sup>4</sup>                    | 4.1 | $\checkmark$ | $\checkmark$ | $\checkmark$ | ×            | ×            | ×            |

Daniele Antonioli - BLUFFS: Bluetooth Forward and Future Secrecy Attacks and Defenses

### BLUFFS Attacks Exploiting 18 devices (17 chips)

#### LSC Victims

- All vulnerable
- Except Logitech BOOM 3 against A2, A5 (require Central auth)
- Google Pixel Buds A-Series accept SE = 1 (no KNOB patch)

#### • SC Victims

- All vulnerable if other victim supports LSC
- Eighth devices are not vulnerable to A4, A5, A6 (enforce SC btw pairing and session establishment)

### **BLUFFS Impact Billions of BT Devices**

- *Devices*: laptops, smartphones, tablets, headsets, cars, ...
- OSes: iOS, Android, Linux, Windows, ...
- Software: BlueZ, Gabeldorsche, Bluedroid, proprietary, ...
- *Hardware*: Intel, Broadcom, Logitech, Infineon, Qualcomm, Apple, Microsoft, CSR, ...
- *BT versions*: 5.2, 5.1, 5.0, 4.2, 4.1, ...
- One BT spec vulnerability → Billions of exploitable devices

E-Spoofer attacks on Xiaomi E-Scooters [WiSec'23]

# **System Model**



E-Spoofer: Attacking and Defending Xiaomi Electric Scooter Ecosystem

# **Attacker Models**



# **Xiaomi E-Scooter Protocols Introduction**

### • P1, P2, P3, P4 (since 2016)

- Application-layer Pairing and Session phases
- No BLE link-layer security

### • Pairing phase

• Devices agree on a Pairing Key (PK)

### • Session phase

- Devices compute a **Session Key** (**SK**) from PK
- Devices use SK to establish a secure channel

# P4: Pairing (ECDH, AES-CCM)



### P4: Proximity/Remote Attacks



# P4: Session (HKDF, AES-CCM) (1)



# P4: Session (HKDF, AES-CCM) (2)



### P4: Proximity/Remote Attacks



# **Evaluation Setup**



5 BLE boards (M365, Pro 1, Pro 2, Essential, Mi 3)
8 BLE firmware (P1, P2, P3, P4)

E-Spoofer: Attacking and Defending Xiaomi Electric Scooter Ecosystem

## **Evaluation Results**

| E-scooter | BLE Board | BLE Fw | Protocol | Strategy   | Prox/Rem Adv. 🏅 🛐 |              |  |
|-----------|-----------|--------|----------|------------|-------------------|--------------|--|
|           |           |        |          |            | Spoof Mi Home     | Arb R/W      |  |
| M365      | M365      | 072    | Pl       | RE         | ✓                 | $\checkmark$ |  |
| M365      | M365      | 081    | P2       | RE, MP, SD | $\checkmark$      | $\checkmark$ |  |
| M365      | Pro 1     | 090    | P3       | RE         | ✓                 | $\checkmark$ |  |
| M365      | M365      | 122    | P4v1     | RE, MP, SD | $\checkmark$      | $\checkmark$ |  |
| M365      | Pro 2     | 129    | P4v1     | RE, MP, SD | 1                 | $\checkmark$ |  |
| Essential | Essential | 152    | P4v1     | RE, MP, SD | $\checkmark$      | $\checkmark$ |  |
| Mi 3      | Mi 3      | 153    | P4v]     | RE, MP, SD | $\checkmark$      | ✓            |  |
| Mi 3      | Mi 3      | 157    | P4v2     | RE, MP     | ✓                 | $\checkmark$ |  |

E-Spoofer: Attacking and Defending Xiaomi Electric Scooter Ecosystem

# BreakMi attacks on-Xiaomi and Fitbit Fitness Trackers [CHES'22, HWIO'23]

# System Model (Xiaomi)



#### **Our focus**

Marco Casagrande - BreakMi: Reversing, Exploiting and Fixing Xiaomi Fitness Tracking Ecosystem

# **Some Xiaomi Security Protocols Vulns**



Marco Casagrande - BreakMi: Reversing, Exploiting and Fixing Xiaomi Fitness Tracking Ecosystem

# **Remote Eavesdropping**



# **Remote App Impersonation**



# **Evaluation Results**

|               | Proximity Attacks |          |          |          | Remote Attacks |          |  |
|---------------|-------------------|----------|----------|----------|----------------|----------|--|
|               | Trac Imp.         | App Imp. | MitM     | Eavesdr. | App Imp.       | Eavesdr. |  |
| Zepp Life     | n/a               | ~        | ~        | ~        | ~              | n/a      |  |
| Zepp          | n/a               | <b>v</b> | ~        | ~        | ~              | n/a      |  |
| Mi Band 2     | ~                 | n/a      | ~        | ~        | n/a            | ~        |  |
| Mi Band 3     | v                 | n/a      | ~        | ~        | n/a            | v        |  |
| Amazfit Cor 2 | <b>v</b>          | n/a      | v        | ~        | n/a            | <b>v</b> |  |
| Mi Band 4     | <b>v</b>          | n/a      | v        | ~        | n/a            | v        |  |
| Mi Band 5     | <b>v</b>          | n/a      | <b>v</b> | v        | n/a            | <b>v</b> |  |
| Mi Band 6     | <b>v</b>          | n/a      | <b>v</b> | v        | n/a            | <b>v</b> |  |

# Videos

#### BLUR talk at AsiaCCS'23

### BLURtooth: Exploiting Cross-Transport Key Derivation in Bluetooth Classic and Bluetooth Low Energy



ACM AsiaCCS'22

Daniele Antonioli (EURECOM and EPFL)

Nils Ole Tippenhauer (CISPA) Kasper Rasmussen (University of Oxford) Mathias Payer (EPFL)

### KNOB and BIAS Attacks at IACR'20



### KNOB and BIAS automotive security talk at ASRG'22



#### BLUFFS talk at 37c3

https://media.ccc.de/v/37c3-12342-bluffs\_bluetooth\_for ward\_and\_future\_secrecy\_attacks\_and\_defenses

### BreakMi talk at HWIO'23 (Marco Casagrande)



#### E-Spoofer talk at WiSec'23 (Marco Casagrande)


## ORSHIN summary (Prof. Aurelien Francillon)

https://vimeo.com/880421366