-~ Jurij Miheli¢
- Faculty of Computer and Information Science

University of Ljubljana

&
- Beyond Semiconductor d.o.o.
~ Slovenia

Contents

* Cybersecurity
* Information flow

e Confidentiality and integrity
e Bell-LaPadula and Biba models

* Information flow policy
* Formalizing tag propagation

* Non-interference

e Language-based IFT

* Information downgrading
e Separation kernel formalization

Cybersecurity

InfoSec — information security

practice of protecting sensitive information and
critical systems

CyberSec — cyber security
InfoSec related to computer systems and data

a

With the goal to prevent/reduce the likeliness of
unauthorized/inappropriate access to data such as

unlawful use, disclosure, disruption
deletion, corruption, modification, inspection
recording, devaluation etc.

Cybersecurity

-

€

A threat is a potential negative action or event
facilitated by a vulnerability that results in
an unwanted impact on a computer system or application.

N

4

Accidental negative events
natural disasters, fires, tornados,
radiation, malfunctioning

L a >
S

be Safe

LADDER ;AFETY

Falling Hurts

* Use ladders according to directions
* Never climb shelving or boxes
* Never carry things in your hands while climbing

* Keep roof ladders locked when not in use

Intentional negative events
adversary attacks, criminal, hacking

Cybersecurity

e Certification: Common Criteria, CC

* ISO/IEC 15408 standard

e Common Criteria for Information Technology
Security Evaluation

e product evaluation criteria

EAL — Evaluation Assurance Levels

EAL1: Functionality Tested
EAL2: Structurally Tested
EAL3: Methodically Tested and Checked
EAL4: Methodically, Designed, Tested and Reviewed
EALS: Semiformally Designed and Tested
EAL6: Semiformally Verified Design and Tested
EAL7: Formally Verified Designed and Tested

Cybersecurity

 Formal methods

fun flow in
"flow in
"flow in
"flow in
"flow in

definition

p
p

subsubsection <Interference relation»

hide_const (open) arc_in

"'a policy = 'a list = bool" where
[1 = False" |
[1 = False" |
(a#b#[]1) = (p: a — b)" |
(a#tb#w) = ((p: a — b) A flow in p (b#w))"

flow in' :: "'a policy = 'a list = bool" where

definition reachable in :: "'a policy = 'a = 'a = bool" ("(_: ~>

subsection <Non-exfiltrations "reachable inpab= (3w .a=hdwAb=1last wA flow in p w)"

text <Non-reachable tags cannot be in outs of the last step>

definition non exfiltration :: "'a policy = 'a step list = bool" where
"non_exfiltration pw = (w=1[]V (Vab . ace€cins (hdw) A (- (p: a ~ b)) — b & outs (las"

lemma preservance _gives non_exfiltration:
shows "preservance p w — non_exfiltration p w"
unfolding preservance def non_exfiltration def
by blast

corollary non_exfiltration:
assumes "valid policy p"
and "V u . restricted step p u"
shows "walk w — non_exfiltration p w"
using assms

using walks are restricted preservance 1 preservance gives non exfiltration

by blast

abbreviation arc_in :: "'a policy = 'a = 'a = bool" ("(_: _ — _)" 70) where
"arc_ in p a b = (a, b) € arcs p"

"flow in' p w = length w > 2 A (Vi < lengthw - 1 . (p: w!i — w!(i+l)))"

)" 70) where

than data flow.

Information flow security { ts different \L

* Information flow
* transfer of information

* from a source to a destination
* a passive entity that contains information
e e.g., variable, record, object, file, memory or storage

location y

* by a subject
* an active entity that requests

access to an object
* e.g., USer, process

e during an information processing activity

e ability of a subject to perform a task or interact with an
object

e e.g., operation, program statement, machine instruction

Information flow security @ @

* Desirable vs. undesirable information flow
» depends on the property/application

 confidentiality

e data can be read by authorized users and
is not disclosed to unauthorized users

e secret data does not leak to a public place
* read protection
* integrity
* data can be changed by authorized users and
cannot be altered by unauthorized users
* trusted data is not influenced by dubious data
* write protection

Information flow security

* Information flow tracking

* analysis and monitoring
» determine the flow in a given program/process
e static analysis, dynamic monitoring

e control
* limiting the flow during information processing
e firewalls, ACLs, secure channels

e Guarantees and assurances
* properties about information propagaties

Foah

B 1

& (A i\ 4 7

b " WA 54 2

3 ;‘ U e
¥ i

Information flow security

* Perfect security is hard

OUR DEVICES /" 1 TURNED
ARE Now 100% N THEM ALL
SECURE. oFF.

© D.Fletcher for CloudTweaks.com

Confidentiality

* Two-level confidentiality

low level: public data high level: private data
* insensitive data * secret data
* may be publicly observed * may not be publicly observed

* Multiple levels

* MLS — Mulitple Levels of Security
* EU classified information

EU Top secret cause exceptionally grave prejudice to
EU Secret seriously harm

EU Confidential harm

EU Restricted be disadvantageous to

Confidentiality

* Bell-LaPadula model
* defined by the US DoD to formalize a MLS policy
e a state transition model of security policy

* security labels on objects F

* clearance levels for subjects Confidential

Unclassified

* subjects access objects

e each state transition preserves a secure state

e two MAC rules
e one DAC rule (specified with an access matrix)

Confidentiality

write up, read down

e Bell-LaPadula model
e two MAC rules —

Simple Security Property Secret Star Property

read down / no read up Confidential write up / no write-down

N Unclassified N

‘ p— ‘ - Secret

& - - Confidential
- - Unclassified

Confidentiality

e Bell-LaPadula model

* Strong Star Property
* subject can write objects only to the same level
* motivated by the integrity concerns

* Trusted Subjects
* can downgrade the information: high to low transfer
e are not restricted to the Star Property

* Principle of Tranquility

* the security level of an object or subject may never
change while it is being referenced

Integrity

* Two-level integrity
* high level: trusted data
* low level: dubious data

* information flow policy
* low to low, high to high, high to low
* but low to high is prohibited

Integrity

* Biba model

* objects and subjects are classified by integrity

levels

e prevent inappropriate modification of data

Simple Integrity Property
read up / no read down

- Highly trusted
Trusted

Slightly trusted
| Untrusted

v

write down, read up

Star Integrity Property
write down / no write up

Integrity

* Bell-LaPadula and Biba models duality

Simple Security Property
read down / no read up

Simple Security Property
read up / no read down

A4

Topsecret |

Secret
Confidential

Unclassified

| Highlytrusted

Trusted
Slightly trusted
Untrusted

h 4

Star Property
write up / no write-down

Star Property
write down / no write up

Information flow policy

Information flow policy

A set of rules specifying directions between entities
in which the information may flow or must not flow.

* entities
* subjects: process, person
* objects: file, memory page, variable
* tags, labels: data classifications
 actions: read, write, computation

Information flow policy

e Definition

P = (T,)
* asetT of entities (labels, tags)
e specifying security classes
e abinary relation ~» over T
* aset of ordered pairs: ~» € TXT
e specifying allowed flow between entities
* a negation of
¢« xoxy=—(xy)

Information flow policy

e Confidentiality
* T = { pub, priv }
» ~» = { pub ~ pub, priv ~ priv, pub ~ priv }

o on o [ANA
Co SR

* Integrity
et~t,d~d,t »d () (=)

Information flow policy

e Confidentiality and integrity

Secret Trusted
Confidential Slightly trusted
Unclassified Untrusted

Information flow policy

* Confidentiality and integrity combined

7\ Private [Tusted
Public Dubious @ @
Dubious Trusted
Private priv priv
dub trust
Public pub pub
pub pub dub trust

dub trust

Information flow policy

* Non-linear policies (\/('Iﬁ\,.7
AB AC BC

e Cartesian product

* subset of permissions A

* Timing
» constant/variable time operations

* Tracking different sources
e keyboard, mouse, GPS, camera

Information flow policy

* Properties of relations

X tox, Vx:

* reflexive: x ~» x

* irreflexive: =(x ~ x)

Xtoy, Vx,y:

* connected: X #y = X yVy»x

* strongly connected: connected + reflexive
Xxtoyvsytox, Vx, y:

* symmetric:x»y =Sy v Xx

* asymmetric:x vy = —(y » x)

* antisymmetric:X M YAy x =S x =Yy
X,y,and z,,Vx,y,z:

* transitive: X » YAy Z > x "V Z

Information flow policy
S
* Properties of relations C
e partially ordered set (POS)

* reflexive, transitive, antisymmetric C
N

* universally bounded lattice (S, 1, T,60,Q)

* POS + supremum/join and infimum/meet

ABC

0,

:

(\/(:f\,\q - S={ABC,AB,AC,BC,A,B,C,¢} /I\
BB AC” BC .

~» = see the figure AB AC

oo s ><><
- T=ABC
o ®=n

BC

Information flow policy

add operation

\PC'FI

» PC:0

atb

@1

0SNG

add

PC+1

i

a+b

Information flow policy

PC:0

0SNG

PC+1 ——(PC:0 PC+1 |——(PC:0 PC+1 —(PC:0)
SUB:0 CMP:0
INC ~(A:0}—{SUB CMP ——(cC:1)
a
0—0 »0—0 00— 0 »0—0
0.—)0\:0,1»—) 1\:0,1»—) >O,1»—> 1

Information

flow policy

0—0

00— 0

O

0—0 »0—0

0—0

»0,1—1—0,1—1

»0,1—1

0,1—1

Information flow policy

* Secure propagation

Theorem 2. Given a security policy P = (T, <) and a walk
(uq,us,...,u;) in a P-restricted step graph we have that the
tag outu, is reachable from any tag s € ins u;.

 Non-exfiltration

Corollary 4 (Non-exfiltration). Given a security policy P =
(T, <) and a walk (u1,us, . ..,u;) in a P-restricted step graph
it holds for all t € T that are not reachable from s € ins u,
then t # out u;.

* Non-infiltration

Corollary 5 (Non-infiltration). Given a security policy P =
(T,=) and a walk w = (uq,usg, . ..,u;) in a P-restricted step
graph it holds for all s € T from which we cannot reach out u,
then s & ins u;.

Noninterference

* Noninterference
* introduced by Goguen and Meseguer, 1982

* a property that restricts
the information flow through a system

X is noninterfering with Y across a system M if
X's input to M does not affect M's output to Y.

= 5

Noninterference

* Noninterference implies confidentiality

X is noninterfering with Y across a system M if
X's input to M does not affect M's output to Y.

Observations of Y are entirely
independent of the actions of X.

Expresses X's confidentiality guarantee:
X cannot reveal any secrets to Y via M.

Noninterference

* Noninterference implies integrity

X is noninterfering with Y across a system M if
X's input to M does not affect M's output to Y.

No information flows from X to Y through M.

Expresses Y's integrity guarantee:
Y cannot be corrupted by X via M.

Noninterference /) /)

e Interference @ @

* pub ~ pub, priv ~ priv, pub ~» priv

* Noninterference
* priv 2 pub
* private data does not interfere with public data

* any variation of private data does not cause a
variation of public data
e adversary

* has access to the public data

e cannot cannot observe any difference between two
executions that differ only in their private data

Language-based IFT

Program analysis
a process of automatic analysis of
the behavior of computer programs

Check correctness Optimize performance
e find programming errors (bugs) * improve program performance
* reveal safety errors * reduce resource usage

* reveal security vulnerabilities

Language-based IFT

e Language-based IFT

* to secure data manipulated by a program
e enforce a given information flow policy
* track possible transfers of information

input

a

€

program

N

4

occurring throughout program execution

> output

input output
input % program]< output
input ”’///' output

Language-based IFT

* Dynamic IFT

 analysis during execution (runtime)
* data from untrusted sources is labeled (tainted)
e each data (memory location) has a label

* |label propagation at runtime
e cah cause overhead on execution

e examines only one possibility

e the actual input
* may underapproximate possible behavior

input

/

\

program

\

]

> output

Language-based IFT

e Static IFT

* analysis without executing the program/code
e performed before execution (on compilation)
* major overhead of analysis

e examines all possibilities
* considers all inputs and all execution paths

e can reveal errors that may not manifest themselves
for a long time

* cah overapproximate possible behavior

input output
input EEEEEE%: program :FEEEEEE output

input output

Language-based IFT |

* Control flow graph
* nodes: operations

42
e edges: transfer of control / ~

b

?

Language-based IFT

* VVariables and security labels
* the policy specifies security classes
* but the program uses variables

* Flow relation on variables
*Xx vy = tag(x) ~ tag(y)

A A

Language-based IFT
* Explicit flow
* from inputs of an operation to its outputs

* tag propagation rule
* tag(result) = tag(argl) @ tag(arg?2) ...

int a: public
int b: private

[2

int x, Y, Z @
// private or public? @

X:=a+a
yi=b+b
z:=a+b

Language-based IFT

caused by a
control flow dependency

* Implicit flow
* in conditionally executed code
* from the condition to the code

bool a: public

‘ | a:
bool b: private bool a: trusted

bool b: dubious

bool x, vy, z, w .
e string x,y, z, w

// private or public? string s = user_input()

if a then x :=true else x := false

trusted or dubious?
if b then y := true else y := false // trusted or dubious

if a then x := "Some string"

2 o o v Tl ifatheny:=s
. if b then z := "Some string"
if a then z :=true :

if bthenw :=s

if b then w := true

Language-based IFT

* Hidden implicit flow
 if a branch is not executed

* How to handle such flows?
e Add spurious definitions into branches

x := false x := false
if cond then x :=true if cond then x :=true else x := x

X:=y:=0
x:=y:=0 if cond then
if cond then x:=42

X:=42 > Y=Yy
sl else
y:=3.14 R

X=X

Language-based IFT

* Tag propagation for implicit flow
e stack S of tags

e contains tags of values
that influence the current flow of control
* rules

* when an operation is executed,
consider also all tags on S for tag propagation

 when a value x influences a branch decision
push tag(x) on the stack S

 when end-of-branch is reached
pop label(x) from the stack S

Downgrading

* Challenge: Information upwards drift
e also called label-creep phenomenon

Secret

Confidential

Unclassified

Downgrading

* Challenge: Noninterference is not practical
* noninterference is too strict

for use in most real-world applications

e e.g., prevents all information flows
from private to public

* for most applications, the appropriate policy
should permit controlled downward flows

A [

Downgrading

* Trusted user/process
* may perform downgrading

e declassification
 for confidentiality policies

* endorsement
* integrity policies

Secret

Confidential

Trusted
downgrade

Unclassified

Downgrading

* Examples

: encryption pt :="42 is the answer"

ct := encrypt(pt)

: : m := "A private message"
hashing .= hash_sha256(m)

* password check

pw :=read_input()
ok := pw.length() >= 10

X :=read_input()

e html escaping v := html_escape(x)

Downgrading

* Intransitive security policy

e ensures that downward
information flow
passes through trusted user

e cycles in the IF policy

* Intransitive non-interference

* not accurate description
 actually, interference relation is not transitive
* noninterference under an intransitive security
policy

Downgrading

e Separating the relation
e security-oblivious operations
* security-aware operations

e Y

pw :=read_input()

ok := pw.length() >= 10
ok := downgrade(ok)
print(ok)

\ 4

hank you

